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Figure 4.1 lllustration of the geometry.of a

linéar discriminant function in two dimensions'
The decision surface, shown in red, is perpen-

dicular to w, and its displacement from the

origin is controlled by the bias parameter u0'
Rls-o, the signed orthogonal dlstance of a gen-

eral point * from the decision surface is given

by g(x)/llwll.
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an arbitrary point x and let xs be its orthogonal projection onto the decision surface'

so that w

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to am-

biguous regions, shown in green. On the left is an example involving the use of two discriminants designed to

Oiètinguish points in class Ci lrom points not in class Cr. On the right is an example involving three discriminant

functions each of which is used to separate a pair of classes Cp and Ci.

example involving three classes where this approach leads to regions of input space

that are ambiguously classified.
An alternative is to introduce K(K - t) 12 binary discriminant functions, one

for every possible pair of classes. This is known as a one-versus-one classifier. Each

point is then classified according to a majority vote amongst the discriminant func-

tions. However, this too runs into the problem of ambiguous regions, as illustrated
in the right-hand diagram of Figure 4.2.

We can avoid these difficulties by considering a single K-class discriminant
comprising K linear functions of the form

yr(x) : wfix * ruas @.9)

andthenassigningapointxtoclass Cpilyp(x) > Aj(:rt) forall j I k.Thedecision
boundary between class C4 and class C, is therefore given by yn(x) : gi(x) and

hence corresponds to a (D - 1)-dimensional hyperplane defined by

(*r - *r)t* -l (.no - ru7s) : 6. (4.10)

This has the same form as the decision boundary for the two-class case discussed in

Section 4.1.1, and so analogous geometrical properties apply.
The decision regions of such a discriminant are always singly connected and

convex. To see this, consider two points xs and xs both of which lie inside decision

region Rp, as illustrated in Figure 4.3. Any point 1 that lies on the line connecting

x4 and Xs câIl be expressed in the form

1: Àxa + (i - À)xs (4.11)

x:xr *r;:----;- llwll
(4.6)

Multiplying both sides of this result by *t and adding us , âÎd making use of y (x) :
wTx f i-uo and g(x1) - wTxr I tro :0, we have

- _ s(x) @t)r:ffi
This result is illustrated in Figure 4.1.

As with the linear regreision models in Chapter 3, it is sometimes convenient

to use a more compact noiation in which we introduce an additional dummy 'input'

value r0 : 1 and ihen define fr : (,0' w) and i : (ro, x) so that

(4 8)

In this case, the decision surfaces are D-dimensional hyperplanes passing through

the origin of the D -l l-dimensional expanded input space'

4.1.2 MultiPle classes

Now consider the extension of linear discriminants to K ) 2 classes' We might

be tempted be to build a K-class discriminant by combining a n1mler of two-class

discriminant functions. However, this leads to some seriou-s difficulties (Duda and

Hart, 1973) as we now show'

Consider the use of K - 1 classifiers each of which solves a two-class prob.lem of

separating points in a particular class cp from points not in that class' This is known

as a one-versus-the-rest classif,er. The left-hànd example in Figure 4'2 shows an

s,(x) : w'x
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where W is a matrix whose kth column comprises the D -t 1-dimensional vector
#n : (.no,wfl)T and i is the corresponding augmented input vector (1, xT)T with
a dummy input rs : 1. This representation was discussed in detail in Section 3. 1 ' A
new input x is then assigned to the class for which the output Ar : *Ti is largest.

We now determine the parameter matrix W by minimizing a sum-of-squares

error function, as we did for regression in Chapter 3. Consider a training da"ta set

{*r, tr} where n - l, ._. , N, and define a matrix T whose nth row is the vector t[,
together with a matrix X whose rùtl' row is i$. The sum-of-squares effor function
can then be written as

Er(vv) : ]rr {txw - T)r(iù - T)} . (4.ts)2 [' ',)

Setting the derivative with respect to Îf to zero,and rearranging, we then obtain the

solution for W in the form

w: lxtx)-'rtr: iiT (4.16)

where *T is the pseudo-inverse of the matrix i, as discussed in Section 3.1.1. We

then obtain the discriminant function in the form

Figure 4.3 lllustration of the decision regions for a mul-

iiJass tinear discriminant, with the decision

boundaries shown in red. lf two points x6

and xs both lie inside the same decision re-

gion Ao, then any point I that lies on the line

Ëonneciing these two points must also lie in

nx, ana Àence the decision region must be

singly connected and convex.

Rj
n
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where 0 < À < 1. From the linearity of the discriminant functions, it follows that

sr(1) : Àvn(*a) + (1 - À)s'l"(xu)' @'t2)

Because both xa and xs lie inside R1", tl follows that 96(xa) > 91(xa)' and

;;a;;j > Ei(*u), to, aît i + k, and hence vr(1) > ai(î)' and so l also lies

inria" æ*. Tlrus 7?r is singly connected and convex'

Note that fbr two 
"urî"r, 

we can either employ the formalism discussed here,

based on two discriminant functions 91(x) and y2(x)' or else use the simpler but

"qri""f"* 
formulation described in Section 4.1.1 based on a single discriminant

function g(x).
Wenowexplorethreeapproachestolearningtheparametersoflineardiscrimi-

nant functions, based on t"uri squares, Fisher's linear discriminant, and the percep-

tron algorithm.

4,1.3 Least squares for classification

InChapter3,weconsideredmodelsthatwerelinearfunctionsoftheparame-
ters, and we saw that the minimization of a sum-of-squares error function led to a

simple closed-form solution for the parameter values. It is therefore tempting to see

if we can apply the sÀe formalism to classification problems' Consider a general

classification problem with K classes, with a i-of-K binary coding scheme for the

target vector t. one justification for using least squares in such a context is that it

approximares ttre conJiiionui"^p".tutionÉ[tlx] of the-target values given the input

vector. For the binary coding ,àh"-", this'conditional expectation is given by 
the

vector of posterior class probabilities. unfortunately, however, these probabilities

are typically upp.o"i-ui"à rather poorly, indeed the approximations can have values

ourside the range (0, îi; d*,; trre rimlieO flexibility àf u tn"ut model as we shall

see shortlY.
Each class C6 is described by its own linear model so that

an(*) : wfx *Trto (4'r3)

, K. We can conveniently group these together using vector nota-

y(x; : lfri @'14)

v(*) :Îf"i: tt (x (4.r7)

An interesting property of least-squares solutions with multiple target variables

is that if every target vector in the training set satisfies some linear constraint

art,"1b:o (4.18)

for some constants a and b, then the model prediction for any value of x will satisfy
the same constraint so that

.ty(*) * ô: 0. (4.19)

Thus if we use a l.-of-K coding scheme for K classes, then the predictions made

by the model will have the property that the elements of y(x) will sum to 1 for any

value of x. However, this summation constraint alone is not sufficient to allow the

model outputs to be interpreted as probabilities because they are not constrained to

lie within the interval (0,1).
The least-squares approach gives an exact closed-form solution for the discrimi-

nant function parameters. However, even as a discriminant function (where we use it
to make decisions directly and dispense with any probabilistic interpretation) it suf-

fers from some severe problems. We have already seen that least-squares solutions

lack robustness to outliers, and this applies equally to the classification application,

as illustrated in Figure 4.4. Herc we see that the additional data points in the right-
hand figure produce a signiflcant change in the location of the decision boundary,

even though these points would be conectly classified by the original decision bound-

ary in the left-hand figure. The sum-of-squares eror function penalizes predictions

that are 'too correct' in that they lie a long way on the correct side of the decision

\T

') i

Etcrr:i.çe,1.2

Se.ctiort 2.3.7

where k : 1,

tion so that
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boundary. In section 7 .1.2, we shall consider several alternative enor functions for

"ru*riÀ"âtion 
and we shall see that they do nor suffer from this difficulty.

However,problemswithleastSquarescanbemoreseverethansimplylackof
robustness, as illustratài in rigur" +s. rrris shows a synthetic data set drawn from

three classes in a two-dimensional input space (*t' 
") 'having 

the property that lin-

ear decision boundaries can give excellent s"pàrution b_e1we.en the classes. Indeed,

the techniqu" or rogirii. ,"gËrrion, described later in this chapter, gives a satisfac-

tory solution as seen irrit 
",ight-lruna 

nro1. However, the least-squares solution gives

poor results, with only u ,-rnËrir"glon àr tn" input space assigned to the green class'

ThefailureofleastSquaresshouldnotsurpriseuswh.enwerecallthatitcor-
responds to maximum titàtinood under the usrumption of a.-Gaussian conditional

distribution, whereas uirôi".g" vectors clearly hàve a distribution that is far from

Gaussian. By adopting more appropriate probaùlistic models, we shall obtain clas-

sification techniques ,riittt mu"tt Uetter properties than least squares' For the moment'

however, we continue to explore alternative nonprobabilistic methods for setting the

parameters in the linear classification models'

4.1.4 Fisher's linear discriminant

one way to view a linear classiflcation model is in terms of dimensionality

reduction. Consider first the case of two classes' and suppose we take the D-

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(x), green (+), and blue (o). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
that the region of input space assigned to the green class is too small and so most of the points from this class
are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing
correct classification of the training data.

dimensional input vector x and project it down to one dimension using

(4.20)

If we place a threshold on y and classify A à -wo as class Ct, aîd otherwise class

C2,then we obtain our standard linear classifier discussed in the previous section.

In general, the projection onto one dimension leads to a considerable loss of infor-
mation, and classes that are well separated in the original D-dimensional space may

become strongly overlapping in one dimension. However, by adjusting the com-
ponents of the weight vectorw, we can select a projection that maximizes the class

separation. To begin with, consider a two-class problem in which there are lft points

of class C1 and N2 points of class C2, so that the mean vectors of the two classes are

givenbY 
I .- 1 s-

-t : 
ù \ 

*'' tn': N, )-i*"' 
(4'2r)

n e(.I tLtç2

The simplest measure of the separation of the classes, when projected onto w, is the

separation of the projected class means. This suggests that we might choose ïv so as

to maximize
TTLz - TrL1: wT(mz - *t) (4.22)

where
rfLP: YTTYr'k @'23)

Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles' together with

the decision boundary round by leasr squares^t1îià.Ë .riuâiun.f also by the logistic regression model (green

curve), which is 0i."u.."î'Ëtd, * é"tiion + s.ziii iôËd;;ipr"Ëhows the côrresponding resutts obtained

when extra data points #;;"i uitt," oottorn r"it'ài ir.,Ë àiâôrâm, srrowing that reast squares is highry sensitive

to outliers, unlike logistic regression'
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ue) along with the histograms

considerable class overlaP in

the Fisher linea r discriminant,

J(w) : st
@.zs)

s?+

We can make the dependence on w explicit by using (4,20), (4.23), and, (4.24) to

rewrite the Fisher criterion in the form

. wTSsw
J(w) -- _-ffi (4.26\

where Se is the betvveen-class covariance matrix and is given by

Ss : (m2 - mr)(m, - -r)t (4.27)

and Slar is the total within-class covariance matrix, given by

s*: D(x, - m1)(x, - mr)r + t(x, - m2)(xn_ rnz)r. (4'28)

neCt n€Cz

Differentiating(4.26) with respect to w, we find that .r(w) is maximized when

(wrSsw)S.o,*: (wrSryw)Ssw. (4.29)

From(4.27),we see that sBw is always in the direction of (m2 --t). Furthermore,

we do not care about the magnitude of w, only its direction, and so we can drop the

scalar factors (wrSsw) unà 1*ts*w). Uuttiptying both sides of (a.29) bv S#
we then obtain

w x S*{(mz - mr). (4.30)

Note that if the within-class covariance is isotropic, so that S1r is proportional to the

unit matrix, we find that w is proportional to the difference of the class means, as

discussed above.
The result (4.30) is known as Fisher's linear discriminant, although strictly it

is not a discriminant but rather a specific choice of direction for projection of the

data down to one dimension. However, the projected data can subsequently be used

to construct a discriminant, by choosing a threshold 96 so that we classify a new

point as belonging to Ct il AG) 2 ls and classify it as belongingto C2 otherwise.

For example, we can model the class-conditional densities p(Alcn) using Gaussian

distributions and then use the techniques of Section L2.4 to find the parameters

of the Gaussian distributions by maximum tikelihood. Having found Gaussian ap-

proximations to the projected classes, the formalism of Section 1.5.1 then gives an

expression for the optimal threshold. Some justification for the Gaussian assumption

comes from the central limit theorem by noting That y : wTx is the sum of a set of
random variables.

4.1.5 Relation to least squares

The least-squares approach to the determination of a linear discriminant was

based on the goal of making the model predictions as close as possible to a set of
target values. By contrast, the Fisher criterion was derived by requiring maximum

class separation in the output space. It is interesting to see the relationship between

these two approaches. In particular, we shall show that, for the two-class problem,

the Fisher criterion can be obtained as a special case of least squares.

So far we have considered 1-of-I( coding for the target values. If, however, we

adopt a slightly different target coding scheme, then the least-squares solution for

4

2

a

a

Appendix E

Exercise 1.4

Exercise 4.5

is the mean of the projected data f.to* "lT: 
C6' However' this expression can be

made arbitrarily large simply by increasin-g.ift" -ugnitu9" ol*: 
' 

To solve this

oroblem, we could.on"'uin w to have 
"nit'ià"gtrt'"so lhat'D''? 

: 1' Using

à Lugrung" multiptier to perform the,constrained"maximization.'we 
then find that

w x (m2 - mr ). rr.,er. ii srill a probler *i,r'r irrit approach. hgyeler' as illustrated

in Figure 4.6. This 'h;;';" 
tju""* ttrut are *"ti separated in the original two-

dimensional ,pu"" i", 'i 
but that huo" 

"on'id"rable 
&erlap when projected onto

the line joining tt"i,,nilirr. ttrls airnculty arises from the strongly nondiagonal

covariances of th" cfasiîrirrUrii"^. The.idea proposed by Fisher is to maxrmrze

a function that will gi"; ;1;;;;;"n"*1i"i u"t*"i"t irtt projlcted class means while

also giving a smail,";;;;nhin each.iurr, itr"."uy rnlnitni'ing-the class overlap'

The projecti"n 
'"'iloiu 

i+:'ô) ttun'ro;t 
'h" 'Ët 

of lub"lled data points in x

into a labelled set in ,rr"'"r" àrÀensional rp;;";. ihe within-class variance of the

transformed data fiom class Cp is therefore given by

,7: D(a* - 
**)' (4'24)

NEUÈ

wherean:wTxn.Wecandeflnethetotalwithin-classvarianceforthewhole
data set to be simply sl + sl. The Fisher .;i;";i;;; defined to be the ratio of the

between-cla$ uu'iunt""tto tlie'within-class variance and is given by

lTLmL2 )'

if..' .
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N

t(*t*,*tre-t,,) : 0 @32)
L,/ \
n:7

I (*t*, * uo -t')*,, : o' @33)

n.:1-

From(4.32),andmakinguseofourchoiceoftargetcodingschemeforthef'''we
lbtain'an expression for the bias in the form

u;o: -v/Tm @34)

where we have used

theweightsbecomesequivalenttotheFishersolution(DudaandHart'1973).In
oarticular, we shall t"k"t'i;;;;àtt t* trutt C1 to be N/l/'' where Jfr is the number

:iïÏ:i|rïË;r'?;, "îa 
l" is the rotal number oi patterns. rhis target value

approximates ttre reciprocal of the prior probability foiclass c1. For class cz, we

shall take the targets to be -l//l/z' where 'n/z is thé number of patterns in class Cz'

The sum-of-squares eror function can be written

1N
E:t! {*t*' +wg-tn)z ' (4'31)

n,:1

Setting the derivatives of -E with respect to ttre and Iil to zero, we obtain respectively
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4.1.6 Fisher's discriminant for multiple classes
We now consider the generalization of the Fisher discriminant to K > 2 classes,

and we shall assume that the dimensionality D of the input space is greater than the
number K of classes. Next, we introduce Dt > I Hnear 'featurês' Ak - wflx, where
k : I, . . . , D' . These feature values can conveniently be grouped togethèr {o form
a vector y. Similarly, the weight vectors {w6} can be considered to be the columns
of a matrix W, so that

y : Wrx. (4.39)

Note that again we are not including any bias parameters in the definition of y. The
generalization of the within-class covariance matrix to the case of K classes follows
from (4.28) to give

^s*: f s* @.40)a
where

S6 | {"" - m*)(x, - -o)t (4.4r)
n€Cx

1
mk

l/k f"' (4.42)
n€Cx

and N6 is the number of patterns in class Ca. In order to find a generalization of the
between-class covariance matrix, we follow Duda and Hat (1973) and consider flrst
the total covariance matrixi,': ",# - 

t,# : o

n:I

(4.35)

(4.31)

and where m is the mean of the total data set and is given by

1A t,*: f 8"" 
: 

t{1"'m1 
+ l/2m2)

(t* * ry#t") w: ry'(mr - ",)

st:!(x,-m)(x,--)t (4.43)
(4.36)

After some straightforward algebra' and again making use of the choice of t'' the

E.rercise 4.6 second equation (4'33) becomes

n:1

where m is the mean of the total data set

(4.44)

and ,Ay' : D* l/6 is the total number of data points. The total covariance matrix can
be decomposed into the sum of the within-class covariance matrix, given by (4.40)
and (4.4I), plus an additional matrix Ss, which we identify as a measure of the
between-class covariance

Sr : Sw * Se 9.45)

where
K

su: f t/r(-r -*)(*r -m):f. @.46)

1g t.K*:;!", : ;f ;Vmr
n:I k=1.

where Sw is defined by (4'28), Ss is defined by (4'27)'.and we have substituted for

the bias using (4.34). Using (4.27), we note atâ,'s"*'i, always in the direction of

(*, - m1). Thus we can write

w x Sff(*, - *,) (4'38)

where we have ignored irrelevant scale factors. Thus the weight vector coincides

with that found from trr" rirr,", criterion. In addition, we have also found an expres-

sion for the bias value'us given by (4'34.)'This tells us that a new vector " t"u1l^O't

classif,ed as belongingîJ Ji"* Ct if gr(x) : wr(x - m) > 0 and class Cz otherwse'
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Thesecovariancematriceshavebeendefinedintheoriginalx-space.Wecannow
define similar matrices in the projected D/-dimensional y-space

K

"*:I D(r" - pr)(v,-pr)r (4'47)

k:r n€Cr

and K
sB:t Nt-(Pn- tù@n- P)r (4'48)

k:7

where

ro:#.L"-' t":*f'*o*' @'4s)

" K n€Cç ,k= t

Againwewishtoconstructascalarthatislargewhenthebetween-classcovariance
is large and when the within-class covariance Is small. There are now many possible

choiés of criterion (Fukunaga, 1990)' One example is given by

J(W) : tr {siv'se} . (4's0)

This criterion can then be rewritten as an explicit function of the projection matrix

W in the form
J(w) : rr {(wsrvwr)-1(\MSBwr)}' 

(4's1)

Maximizationofsuchcriteriaisstraightforward,thoughsomewhatinvolved,andis
discussed at length in-nuf.unugu (199ô). The weight values are determined by those

;i;;*; "iÉ;lS" 
that co=nespond to the D/ largest eigenvalues.

There is on" impJrta.rt result ihat is common to à11 such criteria, which is worth

emphasizing. We irrst note from (4'46) that Ss is composed of the sum of K ma-

trices, each of *nicn i, an-*t"'. pioOuct of two vectors and therefore of rank 1' In

addition, only (K - 1) of these matrices are independent as-a result of the constraint

(4.44).Thus, Se h"r 1";k;;;;'itquut to (K - i) ano so thereare at most (1{ - 1)

nonzero eigenvalues. This shows thàt the projection onto the. (1{ - 1)-dimensional

subspace spanned UV tfr" 
"ig"nvectors 

of Su âo", not alter the value of J(w), and

so we are therefbre unable tI nno more than (K - r) linear'features'by this means

(Fukunaga, 1990).

4.1.7 The Perceptron algorithm

Another example of a linear discriminant model is the perceptron of Rosenblatt

(lg6,),which occuples an important place in the history of patiern recognition al-

gorithms. It coresponds to a two-clais model in which the input vector x is flrst

transformed using a fixed nonlinear transfàrrnaiion to give a fàature vector @(x)'

andthisisthenusedtoconstructageneralizedlinearmodeloftheform

y(x) :/(-'41x;) ê52)
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where the nonlinear activation function /(.) ir given by a step function of the form

T@): {
1

1

+ a20
o<0 (4.s3)

The vector @(x) will typically include a bias component @e(x) : 1. In,earlier
discussions of two-class classification problems, we have focussed on a target coding
scheme in which , € {0,1}, which is appropriate in the context of probabilistic
models. For the perceptron, however, it is more convenient to use target values
t : -lI for class Ct and t : -7 for class Cz, which matches the choice of activation
function.

The algorithm used to determine the parameters w of the perceptron can most
easily be motivated by error function minimization. A natural choice of error func-
tion would be the total number of misclassified patterns. However, this does not lead
to a simple learning algorithm because the error is a piecewise constant function
of w, with discontinuities wherever a change in w causes the decision boundary to
move across one of the data points. Methods based on changing w using the gradi-
ent of the error function cannot then be applied, because the gradient is zero almost
everywhere.

We therefore consider an alternative error function known as the perceptron cri-
terion. To derive this, we note that we are seeking a weight vector w such that
patterns x, in class Cr will have wT@(x,) t 0, whereas patterns x, in class C2

have wr@(x,) < 0. Using the t e {-7, *1} target coding scheme it follows that
we would like all patterns to satisfy wT 6(x.)t. ) 0. The perceptron criterion
associates zero error with any pattern that is conectly classified, whereas for a mis-
classified pattern x, it tries to minimize the quantity -wT Q(x.)t". The perceptron
criterion is therefore given by

E"(*) :-t*'ôntn @.54)
n€M

Frank Rosenblatt
1 928-1 969

Rosenblatt's perceptron played an
important role in the history of ma-
chine learning. lnitially, Rosenblatt
simulated the perceptron on an IBM
704 computer at Cornell in 1957,
but by the early 1960s he had built

special-purpose hardware that provided a direct, par-
allel imp lementation of perceptron learning. Many of
his ideas were encapsulated in "Principles of Neuro-
dynamics: Perceptrons and the Theory of Brain Mech-
anisms,' published in 1962. Rosenblatt's work was
criticized by Marvin Minksy, whose objections were

Seymour Papert. This book was widely misinterpreted
at the time as showing that neural networks were fa-
tally flawed and could only learn solutions for linearly
separable problems. ln fact, it only proved such limita-
tions in the case of single-layer networks such as the
perceptron and merely conjectured (incorrectly) that
they applied to more general network models. Un-
fortunately, however, this book contributed to the sub-
stantial decline in research funding for neural comput-
ing, a situation that was not reversed until the mid-
1980s. Today, there are many hundreds, if not thou-
sands, of applications of neural networks in wide-
spread use, with examples in areas such as handwrit-
ing recognition and information retrieval being used
routinely by millions of people.

1.'11.,

published in the book "Perceptrons", co-authored with
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Sectiort 3.1..J

whereQ/e:Ô(x,)andMdenotesthesetofallmisclassifiedpatterns'Thecon-
tribution to the effor urrà"iut"o with a particular misclassif,ed pattern is a linear

functionofwinregionsofwspacewherethepatternismisclassifiedandzeroin
regions where it i, .o.r""tiy .lassified. The total error function is therefore piecewise

linear.
Wenowapplythestochasticgradientdescentalgorithmtothisenorfunction'

The change iniùe weight vector w is then given by

*(r+1) - *(r) - aVpp(w) : s1(") *nôntn (4.55)

where 4 is the learning ïate parameter and r is an integer that indexes the steps of

the algorithm. s".uorJth; pàt"tpoon function y(x' w) is unchanged if we multiply

w by a constant, we can ,"t th" learning rate pa"ràmeter 4 equal to 1 without loss of

generality. Note that, as the weight vector 
"uolu"t 

during training, the set of patterns

that are misclassified will change'

The perceptron t"urning aigorithm has a simple interpretation, as follows. we

cycle through the training p"utt"in, in turn, and for each pattern xn we evaluate the

perceptron function (î.Àvf. lt the partern is correctly classified, then the weight

vector remains on.frung"i, whereas if it is incorrectly classified, then for class Cr

we add the vector ôér) onto the current estimate of weight vector w while for

class c2 we subtract tù"'i""to, ô(*.) from w. The perceptron learning algorithm is

illustrated in Figure 4.7.

If we consider the effect of a single update in the perceptron learning algorithm,

we see that the contribution to the error from a misclaisified pattern will be reduced

because from (4.55) we have

-*(r+1)T4,, tn: _ y1(r)T ô#n - (ônt.)'ô*tn < -*(")'Ôntn (4'56)

where we have set rl : 7, and made use of llÔ*t.ll'^> 0'. of 
.course' 

this does

not imply that the contribution to the emor runéiion from the other misclassified

patterns will have been reduced. Furthermore, the change in weight vector may have

caused ro." p."uiooJ;;;;;"ily classified parterns ro become misclassified. Thus

the perceptron learnin! rule is not guaranteàd to reduce the total enor function at

each stage.
However,theperceptronConvergencetheoremstatesthatifthereexistsanex-

act solution (in other words, if the tiainin g data set is linearly separable)' then the

perceptron learning "lg";tÉ 
is guaranteeà to flnd an exact solution in a finite num-

ber of steps. proofs àttnis theorJm can be found for example in Rosenblatt(1962)'

Block(1962),Nilsson(1965),MinskyandPapert(1969)'Hertzetal'(1991)'and
Bishop (1995a), Noæ, to*"uer, that the "u*t"t 

of steps required to achieve con-

vergence could still bÉ substantial, and in practice, until .onu.tgence is achreved'

we will not be able to distinguish betweenà nonseparable problem and one that ts

"-n;ïl"i;:r'i#;:T; -* is rinearly separable, rhere mav be manv solutions, and

which one is found .'ifiA"p*O on th; iniiialization of the parameters and on the or-

der of presentation of Àe à?ta points. forttt".rnor", for datà se$ that are not linearly

,"pu.uLl", the perceptron learning algorithm will never converge'
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Figtlr';r 1,,/ lllustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space (@1, dz). The top left plot shows the initial parameter
vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled
In green is misclassified and so its feature vector is added to the current weight vector, giving the new decision
boundary shown in the top right plot. The bottom left plot shows the next mËclassified poinito be considered,
tnotcated by the green circle, and its feature vector is again added to the weight vector giving the decision
ooundary shown in the bottom right plot for which all data points are correctly classified.
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Figure 4.9 Plot of the logistic sigmoid function Ia(a) defined by (4.59), shown in
red, together with the scaled pro-
bit function O(Ào), tor À2 : rl8,
shown in dashed blue, where ô(a)
is defined by (a.11a). The scal-
ing factor n/8 is chosen so that the
derivatives of the two curves 

"r" 
0'5

equal fora:0.

Figure 4.8 lllustration of the Mark 1 perceptron hardware' The photograph on the left shows how the inputs

were obtained using a simple camera system- in which an input scene' in this case a printed character' was

illuminated by powerful lights, and an image focussed onto a 20 x 20 array of cadmium sulphide photocells'

giving a primitive +oo pixËi imaô". t6".n9-*"nttËnïrio rrao a patch b-oard' shown in the middle photograph'

which allowed different configurations of input t"âtui"ïtô Oe tiied' Often these were wired up at random to

demonstrate the ability of the perceptron to tear-nïitÀàuttfre need for precise wiring' in contrast to a modern

digital computer. The pr,oiôéràpr-r-àn the right rho*r àn" of the racks of adaptive weights' Each weight was

implemented using a ,,oi"rv îuiror" resisto-r, ur.o ôàrràâ a potentiometer, driven by an electric motor thereby

alowing the vatue ot tne'ilidight i6Ïà aàirst"b automatically by the learning algorithm'

Aside from difficulties with the learning algorithm, the perceptron does not pro-

vide probabilistic outputs, nor does it generâHze readily to K > 2 classes' The most

irrrpo'rtant timitation, ïo*"u"r, arises Trom the fact that (in common with all of the

l-noa"t, discussed in this chapter and the previous one) it is based on linear com-

binations of fixed basis funciions. More âetailed discussions of the limitations of

p"i."poon, can be found in Minsky and Papert (1969) and Bishop (1995a).

Analogue hardware implemeniations of the perceptron were built by Rosenblatt,

based on Àotor-driven uuriubl" resistors to implement the adaptive parameters uj'
lhese are illustrated in Figure 4.8. The inputs were obtained from a simple camefa

system based on an array-of photo-sensors,.while the basis functions @ could be

chosen in a variety or *uyr, foi example based on simple fixed functions of randomly

chosen subsets of pixets from the input image. Typical applications involved learning

to discriminate simple shapes or characters'

Atthesametimethattheperceptronwasbeingdeveloped,acloselyrelated

rffi*i*;"$ln*::;:"y*.:'#:":î,':iiïJ,iff il""f iî';Ja":i:
as for the perceptron, uut a differ"nt approach to training was adopted (widrow and

Hoff, 1960;Widrow and Lehr, 1990)'

0
50

approach in which we model the class-conditional densities p(xlCn), as well as the
class priors p(Cn), and then use these to compute posterior probabilities p(Cnlx)
through Bayes' theorem.

Consider first of all the case of two classes. The posterior probability for class
Ct caî be written as

p(Ctlx)
p(xlc1)pQv)

p (xlC 1) p (C 1) + p (xlC z) p @z)
1

1 * exp(-a) - o(a) (4.s7)

where we have def,ned

(4.58)

and o(a) is the logistic sigmoid function defined by

ota):F*Ge @ss)

which is plotted in Figure 4.9. The term'sigmoid' means S-shaped. This type of
function is sometimes also called a 'squashing function' because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classiflcation algorithms. It
satisfies the following symmetry property

o(-a):t-o(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

o:n(J \
\ 1 -;, 

(4'61)

and is known as the logit function. It represents the 1og of the ratio of probabilities
In lp(Cy1x) I eÇzlx)) for the two classes, also known as the log odds.

a,
, p(xlC1)p(C1)

"' pl*lcon (cr)

4"2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with

linear decision boundaries arise from simple asrumptio,t, about the distributior of

the data. In Section 1.5.4, we discussed the distinction between the discriminattve

and the generative approaches to classifi.cation. Here we shall adopt a geÛeralve


