
an arbitrary point x and let x_{\perp} be its orthogonal projection onto the decision surface, so that

$$
\mathbf{x}=\mathbf{x}_{\perp}+r \frac{\mathbf{w}}{\|\mathbf{w}\|}
$$

Multiplying both sides of this result by \mathbf{w}^{T} and adding w_{0}, and making use of $y(\mathbf{x})=$ $\mathbf{w}^{\mathrm{T}} \mathbf{x}+w_{0}$ and $y\left(\mathbf{x}_{\perp}\right)=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{\perp}+w_{0}=0$, we have

$$
r=\frac{y(\mathbf{x})}{\|\mathbf{w}\|}
$$

This result is illustrated in Figure 4.1
As with the linear regression models in Chapter 3, it is sometimes convenient to use a more compact notation in which we introduce an additional dummy 'input' to use a more compact notation $\widetilde{x}_{0}=1$ and then define $\widetilde{\mathbf{w}}=\left(w_{0}, \mathbf{w}\right)$ and $\widetilde{\mathbf{x}}=\left(x_{0}, \mathbf{x}\right)$ so that

$$
\begin{equation*}
y(\mathbf{x})=\widetilde{\mathbf{w}}^{\mathrm{T}} \widetilde{\mathbf{x}} . \tag{4.8}
\end{equation*}
$$

In this case, the decision surfaces are D-dimensional hyperplanes passing through the origin of the $D+1$-dimensional expanded input space.

4.1.2 Multiple classes

Now consider the extension of linear discriminants to $K>2$ classes. We migh be tempted be to build a K-class discriminant by combining a number of two-clas discriminant functions. How
Hart, 1973) as we now show.
Consider the use of $K-1$ classifiers each of which solves atwo-class problenown separating points in a particular class \mathcal{C}_{k} from points not in that class. This is known
as a one-versus-the-rest classifier. The left-hand example in Figure 4.2 shows an

Figure 4.2 Attempting to construct a K class discriminant from a set of two class discriminants leads to amingure 1.2 Atempting to construc K e left is an example involving the use of two discriminants designed to
biguous regions, shown in green. On the
distinguish points in class \mathcal{C}_{k} from points not in class \mathcal{C}_{k}. On the right is an example involving three discriminan functions each of which is used to separate a pair of classes \mathcal{C}_{k} and \mathcal{C}_{j}.
example involving three classes where this approach leads to regions of input space that are ambiguously classified

An alternative is to introduce $K(K-1) / 2$ binary discriminant functions, on An possible pair of classes. This is known as a one-versus-one classifier. Each pint is then classified according to a majority vote amongst the discriminant func ions. However, this too runs into the problem of ambiguous regions, as illustrated in the right-hand diagram of Figure 4.2

We can avoid these difficulties by considering a single K-class discriminant comprising K linear functions of the form

$$
\begin{equation*}
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{\mathrm{T}} \mathbf{x}+w_{k 0} \tag{4.9}
\end{equation*}
$$

and then assigning a point \mathbf{x} to class \mathcal{C}_{k} if $y_{k}(\mathbf{x})>y_{j}(\mathbf{x})$ for all $j \neq k$. The decision boundary between class \mathcal{C}_{k} and class \mathcal{C}_{j} is therefore given by $y_{k}(\mathbf{x})=y_{j}(\mathrm{x})$ and hence corresponds to a $(D-1$)-dimensional hyperplane defined by

$$
\begin{equation*}
\left(\mathbf{w}_{k}-\mathbf{w}_{j}\right)^{\mathrm{T}} \mathbf{x}+\left(w_{k 0}-w_{j 0}\right)=0 \tag{4.10}
\end{equation*}
$$

This has the same form as the decision boundary for the two-class case discussed in Section 4.1.1, and so analogous geometrical properties apply

The decision regions of such a discriminant are always singly connected and convex. To see this, consider two points x_{A} and x_{B} both of which lie inside decision region \mathcal{R}_{k}, as illustrated in Figure 4.3. Any point \mathbf{x} that lies on the line connecting x_{A} and x_{B} can be expressed in the form

$$
\widehat{\mathrm{x}}=\lambda \mathrm{x}_{\mathrm{A}}+(1-\lambda) \mathrm{x}_{\mathrm{B}}
$$

Figure 4.3 illustration of the decision regions for a multiclass linear discriminant, with the decision boundaries shown in red. If two points x_{A} and x_{B} both lie inside the same decision region \mathcal{R}_{k}, then any point \hat{x} that lies on the line
connecting these two points must also lie in \mathcal{R}_{k}, and hence the decision region must be singly connected and convex.
where $0 \leqslant \lambda \leqslant 1$. From the linearity of the discriminant functions, it follows that

$$
\begin{equation*}
y_{k}(\widehat{\mathbf{x}})=\lambda y_{k}\left(\mathbf{x}_{\mathrm{A}}\right)+(1-\lambda) y_{k}\left(\mathbf{x}_{\mathrm{B}}\right) . \tag{4.12}
\end{equation*}
$$

Because both x_{A} and x_{B} lie inside \mathcal{R}_{k}, it follows that $y_{k}\left(\mathrm{x}_{\mathrm{A}}\right)>y_{j}\left(\mathrm{x}_{\mathrm{A}}\right)$, and $y_{k}\left(\mathrm{x}_{\mathrm{B}}\right)>y_{j}\left(\mathrm{x}_{\mathrm{B}}\right)$, for all $j \neq k$, and hence $y_{k}(\widehat{\mathbf{x}})>y_{j}(\widehat{\mathbf{x}})$, and so $\widehat{\mathbf{x}}$ also lies inside \mathcal{R}_{k}. Thus \mathcal{R}_{k} is singly connected and convex.

Note that for two classes, we can either employ the formalism discussed here, Not on two discriminant functions $y_{1}(\mathbf{x})$ and $y_{2}(\mathbf{x})$, or else use the simpler but based on two discriminant functions $y_{1}(\mathrm{x})$ and $y_{2}(\mathrm{x}$, or else a single discriminant function $y(\mathrm{x})$.

We now explore three approaches to learning the parameters of linear discrimi nant functions, based on least squares, Fisher's linear discriminant, and the perceptron algorithm.
4.1.3 Least squares for classification

In Chapter 3, we considered models that were linear functions of the parameIn Chapter 3, we considered madion of a sum-of-squares error function led to a ters, ande closed-form solution for the parameter values. It is therefore tempting to see if we can apply the same formalism to classification problems. Consider a general classification problem with K classes, with a 1 -of- K binary coding scheme for the target vector t . One justification for using least squares in such a conext ine input approximates the conditional expectation $\mathbb{E}[t \mid x]$ of the target values given the vector. For the binary coding scheme, this conditional expectation is given by the vector of posterior class probabilities. Unfortunately, however, these probabilities are typically approximated rather poorly, indeed the approximations can have values outside the range $(0,1)$, due to the limited flexibility of a linear model as we shall see shortly.

Each class \mathcal{C}_{k} is described by its own linear model so that

$$
\begin{equation*}
y_{k}(\mathbf{x})=\mathbf{w}_{k}^{\mathrm{T}} \mathbf{x}+w_{k 0} \tag{4.13}
\end{equation*}
$$

where $k=1$, . K. We can conveniently group th

$$
\mathrm{y}(\mathrm{x})=\widetilde{\mathrm{W}}^{\mathrm{T}} \widetilde{\mathrm{x}}
$$

where $\widetilde{\mathbf{W}}$ is a matrix whose $k^{\text {th }}$ column comprises the $D+1$-dimensional vector $\widetilde{\mathbf{w}}_{k}=\left(w_{k 0}, \mathbf{w}_{k}^{\mathrm{T}}\right)^{\mathrm{T}}$ and $\widetilde{\mathbf{x}}$ is the corresponding augmented input vector $\left(1, \mathbf{x}^{\mathrm{T}}\right)^{\mathrm{T}}$ with dummy input $x_{0}=1$. This representation was discussed in detail in Section 3.1. A new input \mathbf{x} is then assigned to the class for which the output $y_{k}=\widetilde{\mathbf{w}}_{k}^{\mathrm{T}} \widetilde{\mathrm{x}}$ is largest.

We now determine the parameter matrix \mathbf{W} by minimizing a sum-of-squares error function, as we did for regression in Chapter 3. Consider a training data set $\left\{\mathbf{x}_{n}, \mathbf{t}_{n}\right\}$ where $n=1, \ldots, N$, and define a matrix \mathbf{T} whose $n^{\text {th }}$ row is the vector $\mathbf{t}_{n}^{\mathrm{T}}$ together with a matrix $\widetilde{\mathbf{X}}$ whose $n^{\text {th }}$ row is $\widetilde{\mathbf{x}}_{n}^{\mathrm{T}}$. The sum-of-squares error function can then be written as

$$
\begin{equation*}
E_{D}(\widetilde{\mathbf{W}})=\frac{1}{2} \operatorname{Tr}\left\{(\widetilde{\mathbf{X}} \widetilde{\mathbf{W}}-\mathbf{T})^{\mathrm{T}}(\widetilde{\mathbf{X}} \widetilde{\mathbf{W}}-\mathbf{T})\right\} . \tag{4.15}
\end{equation*}
$$

Setting the derivative with respect to \mathbf{W} to zero, and rearranging, we then obtain the solution for \widetilde{W} in the form

$$
\widetilde{\mathbf{W}}=\left(\widetilde{\mathbf{X}}^{\mathrm{T}} \tilde{\mathbf{X}}\right)^{-1} \widetilde{\mathbf{X}}^{\mathrm{T}} \mathbf{T}=\widetilde{\mathbf{X}}^{\dagger} \mathbf{T}
$$

where $\widetilde{\mathbf{X}}^{\dagger}$ is the pseudo-inverse of the matrix $\widetilde{\mathbf{X}}$, as discussed in Section 3.1.1. We then obtain the discriminant function in the form

$$
\begin{equation*}
\mathbf{y}(\mathbf{x})=\widetilde{\mathbf{W}}^{T} \widetilde{\mathbf{x}}=\mathrm{T}^{\mathrm{T}}\left(\widetilde{\mathbf{x}}^{\dagger}\right)^{\mathrm{T}} \widetilde{\mathrm{x}} . \tag{4.17}
\end{equation*}
$$

An interesting property of least-squares solutions with multiple target variables is that if every target vector in the training set satisfies some linear constraint

$$
\begin{equation*}
\mathbf{a}^{\mathrm{T}} \mathbf{t}_{n}+b=0 \tag{4.18}
\end{equation*}
$$ he same constraint so that

$$
\begin{equation*}
\mathbf{a}^{\mathrm{T}} \mathbf{y}(\mathbf{x})+b=0 . \tag{4.19}
\end{equation*}
$$

Thus if we use a 1 -of- K coding scheme for K classes, then the predictions made by the model will have the property that the elements of $y(x)$ will sum to 1 for any value of x . However, this summation constraint alone is not sufficient to allow the model outputs to be interpreted as probabilities because they are not constrained to lie within the interval $(0,1)$.

The least-squares approach gives an exact closed-form solution for the discriminant function parameters. However, even as a discriminant function (where we use it to make decisions directly and dispense with any probabilistic interpretation) it suffers from some severe problems. We have already seen that least-squares solutions lack robustness to outliers, and this applies equally to the classification application, as illustrated in Figure 4.4. Here we see that the additional data points in the righthand figure produce a significant change in the location of the decision boundary, even though these points would be correctly classified by the original decision bound ary in the left-hand figure. The sum-of-squares error function penalizes prediction that are 'too correct' in that they lie a long way on the correct side of the decision

-4 ${ }^{-2}$ The left plot shows data from two classes, denoted by red crosses and blue circles, together with Figure 4.4 The left plot shows data from two classes, denoted by red crosses and blue circles,
the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green the decision boundary found by least squares (magenta curve) and also by the logistic regression model (green
 when extra data points ane added
to outliers, unlike logistic regression.
boundary. In Section 7.1.2, we shall consider several alternative error find classification and we shall see that they do not suffer from this difficulty.

However, problems with least squares can be more severe than simply lack of robustness, as illustrated in Figure 4.5. This shows a synthetic data set drawn fromthree classes in a two-dimensional input space (x_{1}, x_{2}), having the property that linear decision boundaries can give excellent separation between the classes. Indeed, the technique of logistic regression, described later in this chapter, gives a satisfactory solution as seen in the right-hand plot. However, the least-squares solution gives poor results, with only a small region of the input space assigned to the green class.

The failure of least squares should not surprise us when we recall that it corresponds to maximum likelihood under the assumption of a Gaussian conditional distribution, whereas binary target vectors clearly have a distribution that is far from Gaussian. By adopting more appropriate probabilistic models, we shall obtain classification techniques with much better properties than least squares. For the moment, however, we continue to explore alternative nonprobabilicthods for setting the parameters in the linear classification models.

4.1.4 Fisher's linear discriminant

One way to view a linear classification model is in terms of dimensionality reduction. Consider first the case of two classes, and suppose we take the D -

Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red Figure 4.5 Example of a synthetic data set comprising three classes, with training data points denoted in red
(\times), green $(+)$, and blue (0). Lines denote the decision boundaries, and the background colours denote the (x), green $(+)$, and blue (0). Lines denote the decision boundaries, and the background colours denote the
respective classes of the decision regions. On the left is the result of using a least-squares discriminant. We see
 are misclassified. On the right is the result of using logistic regressions as described in Section 4.3.2 showing correct classification of the training data.
dimensional input vector x and project it down to one dimension using

$$
y=\mathbf{w}^{\mathrm{T}} \mathbf{x} .
$$

If we place a threshold on y and classify $y \geqslant-w_{0}$ as class \mathcal{C}_{1}, and otherwise class \mathcal{C}_{2}, then we obtain our standard linear classifier discussed in the previous section. In general, the projection onto one dimension leads to a considerable loss of informe strongly overlapping in one dimension. However, by adjusting the com ponents of the weight vector w, we can select a projection that maximizes the class saration. To begin with, consider a two-class problem in which there are N_{1} point f $1, \mathcal{C}_{1}$ and N_{2} points of class \mathcal{C}_{2} so that the mean vectors of the two classes are given by

$$
\begin{equation*}
\mathbf{m}_{1}=\frac{1}{N_{1}} \sum_{n \in \mathcal{C}_{1}} \mathbf{x}_{n}, \quad \mathbf{m}_{2}=\frac{1}{N_{2}} \sum_{n \in \mathcal{C}_{2}} \mathbf{x}_{n} . \tag{4.21}
\end{equation*}
$$

The simplest measure of the separation of the classes, when projected onto w , is the separation of the projected class means. This suggests that we might choose w so as to maximize

$$
m_{2}-m_{1}=\mathbf{w}^{\mathrm{T}}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)
$$

46. The le plasses (depicted in red and blue) along with the histograms Figure 4.6 The left plot shows samples from two classes (deps. Note that there is considerable class overiap in resulting from projection onto the line joining the corresponding projection based on the Fisher linear discriminant, the projected space. improved class separation.
showing the greatly
is the mean of the projected data from class \mathcal{C}_{k}. However, this expression can be is the mean of the projected data from class \mathcal{C}_{k}. However, this expressite this made arbitrarily large simply by in have unit length, so that $\sum_{i} w_{i}^{2}=1$. Using problem, we could constrain w to the constrained maximization, we then find that $\mathrm{w} \propto\left(\mathrm{m}_{2}-\mathrm{m}_{1}\right)$. There is still a problem that are well separated in the original two$w \propto\left(m_{2}-6\right.$. This shows two classes that are well separated in the original two- in Figure 4.6. the line joining their means. This difficulty arises from the strongly nondiagonal the line joining their meass. Tistributions. The idea proposed by Fisher is to maximize covariances of the classe a large separation between the projected class means while also giving a small variance within each class, thereby minimizing the classover in x also giving a smation formula (4.20) transforms the set of labelled data points in x

The projection formula (4.2ensional space y. The within-class variance of the transformed data from class \mathcal{C}_{k} is therefore given by

$$
s_{k}^{2}=\sum_{n \in \mathcal{C}_{k}}\left(y_{n}-m_{k}\right)^{2}
$$

where $y_{n}=\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}$. We can define the total within-class variance for the whole where $y_{n}=\mathrm{w}_{n}$.
data set to be simply $s_{1}^{2}+s_{2}^{2}$. The Fisher criterion is defined to be the ratio of the between-class variance to the within-class variance and is given by

$$
J(\mathbf{w})=\frac{\left(m_{2}-m_{1}\right)^{2}}{s_{1}^{2}+s_{2}^{2}} .
$$ write the Fisher criterion in the form

$$
\begin{equation*}
J(\mathbf{w})=\frac{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}}{\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}} \tag{4.26}
\end{equation*}
$$

where S_{B} is the between-class covariance matrix and is given by

$$
\begin{equation*}
\mathbf{S}_{\mathrm{B}}=\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right)^{\mathrm{T}} \tag{4.27}
\end{equation*}
$$

and S_{W} is the total within-class covariance matrix, given by

$$
\begin{equation*}
\mathbf{S}_{\mathrm{W}}=\sum_{n \in \mathcal{C}_{1}}\left(\mathbf{x}_{n}-\mathbf{m}_{1}\right)\left(\mathbf{x}_{n}-\mathrm{m}_{1}\right)^{\mathrm{T}}+\sum_{n \in \mathcal{C}_{2}}\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{2}\right)^{\mathrm{T}} . \tag{4.28}
\end{equation*}
$$

Differentiating (4.26) with respect to \mathbf{w}, we find that $J(\mathbf{w})$ is maximized when

$$
\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right) \mathbf{S}_{\mathrm{W}} \mathbf{w}=\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{W}} \mathbf{w}\right) \mathbf{S}_{\mathrm{B}} \mathbf{w}
$$

From (4.27), we see that $S_{B} W$ is always in the direction of $\left(m_{2}-m_{1}\right)$. Furthermore, we do not care about the magnitude of w , only its direction, and so we can drop the scalar factors $\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{B}} \mathbf{w}\right)$ and $\left(\mathbf{w}^{\mathrm{T}} \mathbf{S}_{\mathrm{w}} \mathbf{w}\right)$. Multiplying both sides of (4.29) by $\mathbf{S}_{\mathrm{W}}^{-1}$ we then obtain

$$
\begin{equation*}
\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \tag{4.30}
\end{equation*}
$$

Note that if the within-class covariance is isotropic, so that \mathbf{S}_{W} is proportional to the unit matrix, we find that w is proportional to the difference of the class means, as discussed above.

The result (4.30) is known as Fisher's linear discriminant, although strictly it is not a discriminant but rather a specific choice of direction for projection of the data down to one dimension. However, the projected data can subsequently be used to construct a discriminant, by choosing a threshold y_{0} so that we classify a new point as belonging to \mathcal{C}_{1} if $y(\mathbf{x}) \geqslant y_{0}$ and classify it as belonging to \mathcal{C}_{2} otherwise. For example, we can model the class-conditional densities $p\left(y \mid \mathcal{C}_{k}\right)$ using Gaussian distributions and then use the techniques of Section 1.2.4 to find the parameters of the Gaussian distributions by maximum likelihood. Having found Gaussian approximations to the projected casses, he oustification for the Gaussian assumption
 comes from the central limit theorem by noting that $y=\mathrm{w}^{\mathrm{T}} \mathrm{x}$ is the sum of a set of random variables.

4.1.5 Relation to least squares

The least-squares approach to the determination of a linear discriminant was based on the goal of making the model predictions as close as possible to a set of target values. By contrast, the Fisher criterion was derived by requiring maximum class separation in the output space. It is interesting to see the relationship between these two approaches. In particular, we shall show that, for the two-class problem, the Fisher criterion can be obtained as a special case of least squares

So far we have considered 1 -of- K coding for the target values. If, however, we adopt a slightly different target coding scheme, then the least-squares solution for
he weights becomes equivalent to the Fisher solution (Duda and Hart, 1973). In he weights becomes equivalent to the class \mathcal{C}_{1} to be N / N_{1}, where N_{1} is the numbe particular, we shall take the targets in total number of patterns. This target value of patterns in class \mathcal{C}_{1}, and N is the prior probability for class \mathcal{C}_{1}. For class \mathcal{C}_{2}, we approximates the reciprocal of
shall take the targets to be $-N / N_{2}$, where N_{2} is the number of patterns in class \mathcal{C}_{2}

The sum-of-squares error function can be written

$$
\begin{equation*}
E=\frac{1}{2} \sum_{n=1}^{N}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+w_{0}-t_{n}\right)^{2} \tag{4.31}
\end{equation*}
$$

Setting the derivatives of E with respect to w_{0} and w to zero, we obtain respectively

$$
\begin{align*}
\sum_{n=1}^{N}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+w_{0}-t_{n}\right) & =0 \tag{4.32}\\
\sum_{n=1}^{N}\left(\mathbf{w}^{\mathrm{T}} \mathbf{x}_{n}+w_{0}-t_{n}\right) \mathbf{x}_{n} & =0 \tag{4.33}
\end{align*}
$$

From (4.32), and making use of our choice of target coding scheme for the t_{n}, we obtain an expression for the bias in the form

$$
w_{0}=-\mathrm{w}^{\mathrm{T}} \mathrm{~m}
$$

where we have used

$$
\begin{equation*}
\sum_{n=1}^{N} t_{n}=N_{1} \frac{N}{N_{1}}-N_{2} \frac{N}{N_{2}}=0 \tag{4.35}
\end{equation*}
$$

and where m is the mean of the total data set and is given by

$$
\begin{equation*}
\mathrm{m}=\frac{1}{N} \sum_{n=1}^{N} \mathrm{x}_{n}=\frac{1}{N}\left(N_{1} \mathrm{~m}_{1}+N_{2} \mathrm{~m}_{2}\right) \tag{4.36}
\end{equation*}
$$

After some straightforward algebra, and again making use of the choice of t_{n}, the second equation (4.33) becomes

$$
\begin{equation*}
\left(\mathbf{S}_{\mathrm{W}}+\frac{N_{1} N_{2}}{N} \mathbf{S}_{\mathrm{B}}\right) \mathbf{w}=N\left(\mathbf{m}_{1}-\mathbf{m}_{2}\right) \tag{4.37}
\end{equation*}
$$

where S_{W} is defined by (4.28), S_{B} is defined by (4.27), and we have substituted for where S_{W} is defined by $(4.28), S_{B}$ is we note that $S_{B} w$ is always in the direction of the bias using (4.34). can write

$$
\begin{equation*}
\mathbf{w} \propto \mathbf{S}_{\mathrm{W}}^{-1}\left(\mathbf{m}_{2}-\mathbf{m}_{1}\right) \tag{4.38}
\end{equation*}
$$

where we have ignored irrelevant scale factors. Thus the weight vector coincide where we found from the Fisher criterion. In addition, we have also found an expres with that found from the Fiver by (4.34). This tells us that a new vector x should b sion for thass \mathcal{C}_{1} if $y(\mathbf{x})=\mathbf{w}^{\mathrm{T}}(\mathbf{x}-\mathbf{m})>0$ and class \mathcal{C}_{2} otherwise.

4.1.6 Fisher's discriminant for multiple classes

We now consider the generalization of the Fisher discriminant to $K>2$ classes, and we shall assume that the dimensionality D of the input space is greater than the number K of classes. Next, we introduce $D^{\prime}>1$ linear 'features' $y_{k}=\mathrm{w}^{\mathrm{T}} \mathrm{x}$, where $k=1, \ldots, D^{\prime}$. These feature values can conveniently be grouped together to form a vector y . Similarly, the weight vectors $\left\{\mathrm{w}_{k}\right\}$ can be considered to be the columns of a matrix W, so that

$$
\begin{equation*}
\mathrm{y}=\mathrm{W}^{\mathrm{T}} \mathrm{x} . \tag{4.39}
\end{equation*}
$$

Note that again we are not including any bias parameters in the definition of \mathbf{y}. The generalization of the within-class covariance matrix to the case of K classes follows from (4.28) to give

$$
\mathbf{S}_{\mathrm{W}}=\sum_{k=1}^{K} \mathbf{S}_{k}
$$

where

$$
\begin{align*}
\mathbf{s}_{k} & =\sum_{n \in \mathcal{C}_{k}}\left(\mathbf{x}_{n}-\mathbf{m}_{k}\right)\left(\mathbf{x}_{n}-\mathbf{m}_{k}\right)^{\mathrm{T}} \tag{4.41}\\
\mathbf{m}_{k} & =\frac{1}{N_{k}} \sum_{n \in \mathcal{C}_{k}} \mathbf{x}_{n} \tag{4.42}
\end{align*}
$$

and N_{k} is the number of patterns in class \mathcal{C}_{k}. In order to find a generalization of the between-class covariance matrix, we follow Duda and Hart (1973) and consider first the total covariance matrix

$$
\begin{equation*}
\mathbf{S}_{\mathrm{T}}=\sum_{n=1}^{N}\left(\mathbf{x}_{n}-\mathbf{m}\right)\left(\mathbf{x}_{n}-\mathbf{m}\right)^{\mathrm{T}} \tag{4.43}
\end{equation*}
$$

where m is the mean of the total data set

$$
\begin{equation*}
\mathbf{m}=\frac{1}{N} \sum_{n=1}^{N} \mathbf{x}_{n}=\frac{1}{N} \sum_{k=1}^{K} N_{k} \mathbf{m}_{k} \tag{4.44}
\end{equation*}
$$

and $N=\sum_{k} N_{k}$ is the total number of data points. The total covariance matrix can be decomposed into the sum of the within-class covariance matrix, given by (4.40) and (4.41), plus an additional matrix \mathbf{S}_{B}, which we identify as a measure of the between-class covariance

$$
\begin{equation*}
\mathbf{S}_{\mathrm{T}}=\mathbf{S}_{\mathrm{W}}+\mathbf{S}_{\mathrm{B}} \tag{4.45}
\end{equation*}
$$

where

$$
\mathbf{S}_{\mathrm{B}}=\sum_{k=1}^{K} N_{k}\left(\mathbf{m}_{k}-\mathbf{m}\right)\left(\mathbf{m}_{k}-\mathbf{m}\right)^{\mathrm{T}} .
$$

where the nonlinear activation function $f(\cdot)$ is given by a step function of the form

$$
f(a)= \begin{cases}+1, & a \geqslant 0 \\ -1, & a<0 .\end{cases}
$$

The vector $\phi(\mathrm{x})$ will typically include a bias component $\phi_{0}(\mathrm{x})=1$. In earlier discussions of two-class classification problems, we have focussed on a target coding scheme in which $t \in\{0,1\}$, which is appropriate in the context of probabilistic models. For the perceptron, however, it is more convenient to use target values $t=+1$ for class \mathcal{C}_{1} and $t=-1$ for class \mathcal{C}_{2}, which matches the choice of activation function.

The algorithm used to determine the parameters \mathbf{w} of the perceptron can most easily be motivated by error function minimization. A natural choice of error function would be the total number of misclassified patterns. However, this does not lead to a simple learning algorithm because the error is a piecewise constant function of w , with discontinuities wherever a change in w causes the decision boundary to move across one of the data points. Methods based on changing w using the gradient of the error function cannot then be applied, because the gradient is zero almost everywhere.

We therefore consider an alternative error function known as the perceptron criterion. To derive this, we note that we are seeking a weight vector \mathbf{w} such that patterns \mathbf{x}_{n} in class \mathcal{C}_{1} will have $\mathrm{w}^{-} \phi\left(\mathbf{x}_{n}\right)>0$, whereas patterns \mathbf{x}_{n} in class \mathcal{C}_{2} have $\mathrm{w}^{\mathrm{T}} \phi\left(\mathrm{x}_{n}\right)<0$. Using the $t \in\{-1,+1\}$ target coding scheme it follows that we would like all patterns to satisfy $\mathrm{w}^{\mathrm{T}} \phi\left(\mathrm{x}_{n}\right) t_{n}>0$. The perceptron criterion associates zero error with any pattern that is correctly classified, whereas for a mis classified pattern \mathbf{x}_{n} it tries to minimize the quantity $-\mathrm{w}^{-1} \phi\left(\mathrm{x}_{n}\right) t_{n}$. The perceptron criterion is therefore given by

$$
E_{\mathrm{P}}(\mathrm{w})=-\sum_{n \in \mathcal{M}} \mathrm{w}^{\mathrm{T}} \phi_{n} t_{n}
$$

discussed at enghe in the eigenvectors of $\mathbf{S}^{-1} \mathbf{S}_{\mathrm{B}}$ that correspond to the D^{\prime} largest eigenvalues

There is one important result that is common to all such criteria, which is worth . We first note from (4.46) that \mathbf{S}_{B} is composed of the sum of K matrices, ech which is an outer product of two vectors and therefore of rank 1 . In addition only ($K-1$) of these matrices are independent as a result of the constraint (4.44). Thus, \mathbf{S}_{B} has rank at most equal to $(K-1)$ and so there are at most $(K-1)$ (4.44). Thus, \mathbf{S}_{B} has rat nonzero eigenales. the eigenvectors of \mathbf{S}_{B} does not alter the value of $J(\mathbf{w})$, and so we are therefore unable to find more than ($K-1$) linear 'features' by this means (Fukunaga, 1990).
4.1.7 The perceptron algorithm

Another example of discriminant model is the perceptron of Rosenblatt Another example of a linear discriminant model is the perceptern recognition al(192), which occupies an important place in the in which the input vector x is first gorithms. It corresponds to a two-class model in which the input vectore $\phi(\mathbf{x})$, ransformed using a fixed nonlinear transformation to give a feature

$$
y(\mathrm{x})=f\left(\mathbf{w}^{\mathrm{T}} \phi(\mathrm{x})\right)
$$

Seymour Papert. This book was widely misinterprete at the time as showing that neural networks were fatally flawed and could only learn solutions for linearly separable problems. In fact, it only proved such limitations in the case of single-layer networks such as th they applied to more general network models. Un fortunately, however, this book contributed to the sub stantial decline in research funding for neural comput ing, a situation that was not reversed until the mid 1980s. Today, there are many hundreds, if not thou
sands, of applications of neural networks in wide spread use, with examples in areas such as handwrit ing recognition and information retrieval being use routinely by millions of people.
where $\phi_{n}=\phi\left(\mathbf{x}_{n}\right)$ and \mathcal{M} denotes the set of all misclassified patterns. The conwhere $\phi_{n}=\phi\left(x_{n}\right)$ associated with a particular misclassified pattern is a linear fribution to the error associon of w in regace where the pattern is misclassified and zero in regions where it is correctly classified. The total error function is therefore piecewise regions
linear.
We now apply the stochastic gradient descent algorithm to this error function. The change in the weight vector w is then given by

$$
\mathbf{w}^{(\tau+1)}=\mathbf{w}^{(\tau)}-\eta \nabla E_{\mathrm{P}}(\mathbf{w})=\mathbf{w}^{(\tau)}+\eta \phi_{n} t_{n}
$$

where η is the learning rate parameter and τ is an integer that indexes the steps of the algorithm. Because the perceptron function $y(\mathbf{x}, \mathbf{w})$ is unchanged if we multiply the algorithm. Because the perceptron the learning rate parameter η equal to 1 without loss of w by a constant, we can set weight vector evolves during training, the set of patterns generaity.

The perceptron learning algorithm has a simple interpretation, as follows. We
The perceptron learning algon in turn, and for each pattern \mathbf{x}_{n} we evaluate the cycle through the (4.52). If the pattern is correctly classified, then weight percept ains unchanged, whereas if it is incorrectly classified, then for class C vecor the vector $\phi\left(\mathrm{x}_{n}\right)$ onto the current estimate of weight vector \mathbf{w} while for we ${ }^{\text {a }}$. ${ }^{2}$. The perceptron learning algorithm is illustrated in Figure 4.7

If we consider the effect of a single update in the perceptron learning algorithm, If we conhe contribution to the error from a misclassified patern will be reduced because from (4.55) we have

$$
\begin{equation*}
-\mathrm{w}^{(\tau+1) \mathrm{T}} \phi_{n} t_{n}=-\mathrm{w}^{(\tau) \mathrm{T}} \phi_{n} t_{n}-\left(\phi_{n} t_{n}\right)^{\mathrm{T}} \phi_{n} t_{n}<-\mathrm{w}^{(\tau) \mathrm{T}} \phi_{n} t_{n} \tag{4.56}
\end{equation*}
$$

where we have set $\eta=1$, and made use of $\left\|\phi_{n} t_{n}\right\|^{2}>0$. Of course, this does not imply that the contribution to the error function from the other misclassified are pated the pred error function at each stage.

However, the perceptron convergence theorem states that if there exists an exact solution (in other words, if the training data set is linearly separable), then the perceptron learning algorithm is guaranteed to find an exact solution in a finite number of steps. Proofs of this theorem can be found for example intz et al. (1991), and lock (192), ishop (1) ill be substantial, and in practice, until convergence is achieved, ere whe the is imply slow to converge.
mply slow to converge. Even when the data sepend on the initialization of the parameters and on the or which of in intata points. Furthermore, for data sets that are not linearly epable the perceptron learning algorithm will never converge.

Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two Figure 4.7 Illustration of the convergence of the perceptron learning algorithm, showing data points from two
classes (red and blue) in a two-dimensional feature space $\left(\phi_{1}, \phi_{2}\right)$. The top left plot shows the initial parameter vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the vector w shown as a black arrow together with the corresponding decision boundary (black line), in which the
arrow points towards the decision region which classified as belonging to the red class. The data point circled in green is misclassified and so its feature vector is added to the current weight vector, giving the new decision boundary shown in the top right plot. The bottom left plot shows the next misclassified point to be considered, naicated by the green circle, and its feature vector is again added to the weight vector giving the decision boundary shown in the bottom right plot for which all data points are correctly classified.

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs were obtained using a simple camera system in which an input scene, in this case a printed character, was illuminated by powerful lights, and an image focussed onto a 20×20 array of cadmium sulphide photocells, giving a primitive 400 pixel image. The perceptron also had a patch Ofard these were wired up at random to demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was implemented using a rotary variable resistor, also called a potentiometer, driven by an
allowing the value of the weight to be adjusted automatically by the learning algorithm.

Aside from difficulties with the learning algorithm, the perceptron does not provide probabilistic outputs, nor does it generalize readily to $K>2$ classes. The most important limitation, however, arises from the fact that (in common with all of the models discussed in this chapter and the previous one) it is based on linear combinations of fixed basis functions. More detailed discussions of the 105 perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a)

Analogue hardware implementations of the perceptron were buil by Rosenblat, based on motor-driven variable resistors to implement the adaptive parameters These are illustrated in Figure 4.8. The inputs were obtained from a simple cald be system based on an array of photo-sensors, while bed function of randomly chosen in a variety of ways, for example based on simped function frando chosen subsets of pixels from the input image. Typical applications involved learning to discriminate simple shapes or characters.

At the same time that the perceptron was being developed, a closely related system called the adaline, which is short for 'adaptive linear element', was being explored by Widrow and co-workers. The functional form of the model was the same as for the perceptron, but a different approach to training was adopted (Widrow and Hoff, 1960; Widrow and Lehr, 1990).
4.2. Probabilistic Generative Models

We turn next to a probabilistic view of classification and show how models with We rear decision boundaries arise from simple assumptions about the distribution of the data. In Section 1.5.4, we discussed the distinction between the discriminative and the generative approaches to classification. Here we shall adopt a generative

Figure 4.9 Plot of the logistic sigmoid function Plot of the logistic sigmoid function
$\sigma(a)$ defined by (4.59), shown in red, together with the scaled prored, together with the scaled pro-
bit function $\Phi(\lambda a)$, for $\lambda^{2}=\pi / 8$, shown in dashed blue, where $\Phi(a)$ is defined by (4.114). The scal ing factor $\pi / 8$ is chosen so that the
derivatives of the two curves are equal for $a=0$.

approach in which we model the class-conditional densities $p\left(\mathbf{x} \mid \mathcal{C}_{k}\right)$, as well as the class priors $p\left(\mathcal{C}_{k}\right)$, and then use these to compute posterior probabilities $p\left(\mathcal{C}_{k} \mid \mathbf{x}\right)$ through Bayes' theorem.

Consider first of all the case of two classes. The posterior probability for class \mathcal{C}_{1} can be written as

$$
\begin{aligned}
p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) & =\frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)+p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)} \\
& =\frac{1}{1+\exp (-a)}=\sigma(a)
\end{aligned}
$$

where we have defined

$$
a=\ln \frac{p\left(\mathbf{x} \mid \mathcal{C}_{1}\right) p\left(\mathcal{C}_{1}\right)}{p\left(\mathbf{x} \mid \mathcal{C}_{2}\right) p\left(\mathcal{C}_{2}\right)}
$$

and $\sigma(a)$ is the logistic sigmoid function defined by

$$
\sigma(a)=\frac{1}{1+\exp (-a)}
$$

which is plotted in Figure 4.9. The term 'sigmoid' means S-shaped. This type of function is sometimes also called a 'squashing function' because it maps the whole real axis into a finite interval. The logistic sigmoid has been encountered already in earlier chapters and plays an important role in many classification algorithms. It satisfies the following symmetry property

$$
\sigma(-a)=1-\sigma(a)
$$

as is easily verified. The inverse of the logistic sigmoid is given by

$$
a=\ln \left(\frac{\sigma}{1-\sigma}\right)
$$

and is known as the logit function. It represents the \log of the ratio of probabilitie $\ln \left[p\left(\mathcal{C}_{1} \mid \mathbf{x}\right) / p\left(\mathcal{C}_{2} \mid \mathbf{x}\right)\right]$ for the two classes, also known as the log odds.

