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4"2. Probab ilistic Generative Models

Figure 4.9 Plot of the logistic sigmoid function
o(a) defined-by (+.Ëg), shown in I

red, together with the scaled pro-
bit function O(Àa), lor ),2 : rl},
shown in dashed blue, where @(a)
is defined by (a.11a). The scal-
ing factor r/8 is chosen so that the
derivatives'of the two curves ur" 0'5

equalfora:0.
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Aside from difficulties with the learning algorithm, the 
_perceptron 

does not pro-

vide probabitirti. ootputr, not does it genetaliiereadily to K > 2 classes' The most

important limitation, ft**"t, arises îrom the fact that (in common with all of the

modelsdiscussedintt,i'chapterandthepreviousone)itisbasedonlinearcom-
binations of fixed basis functions. More àetailed discussions of the limitations of

;;;;;;;;"".an be found in Minskv and Papert (1969) and Bishop (1995a)'

Analogue t,u.O*ur"i*piÀ"nârlons of the perceptron were built by Rosenblatt,

based on motor-driven uu.àbl" resistors to implement the adaptive parameters u)j '

These are illustrated in flgui" 4.8. The inputs were obtained from a simple camera

Systembasedonananay-ofphoto-sensors,whilethebasisfunctions@couldbe
choseninavarietyof*uy,,for^examplebasedonsimplefixedfunctionsofrandomly
chosen subsets of pixels irom the inpùt image' TypicJ applications involved learning

to discriminate simple shapes or characters'

Atthesametimethattheperceptronwasbeingdeveloped,acloselyrelated
system called the oaotiil-*ni"t ir short for 'adaptive linear element', was being

exploredby widrow uJ"o-,"orters. The functional form of the model was the same

as for the perceptron, but a differen, upproufi to ffaining was adopted (widrow a'd

Hoff, 1960;Widrow and Lehr, 1990)'

approach in which we model the class-conditional densities p(xlCn), as well as the
class priors p(Cn), and then use these to compute posterior probabilities p(Cnlx)
through Bayes' theorem.

Consider first of all the case of two classes. The posterior probability for class
C1 caî be written as

p(Ctlx)
p(xlCt)p(Ct)

M
1:-,.r * exp(-a)

: o(a) (4.s7)

where we have defined

(4.58)

and o(a) is the logistic sigmoid function defined by

1o(a): ,*"*Gt G'set

which is plotted in Figure 4.9. The term 'sigmoid' means S-shaped. This type of
function is sometimes also called a 'squashing function' because it maps the whole
real axis into a finite interval. The logistic sigmoid has been encountered already
in earlier chapters and plays an important role in many classification algorithms. It
satisfies the following symmetry property

"(-cl):1-o(a) (4.60)

as is easily verified. The inverse of the logistic sigmoid is given by

a: Irr (=) G.6t)\I - o./

and is known as the logit function. It represents the log of the ratio of probabilities
Inlp(Cy1x)lpQzlx)) forthe two classes, also known asthe log odds.

. p(xlCt)pTr)
o : rn 1@;rç;

We turn next to a probabilistic view of classification and show how models with

linear decision boundaries arise from simple urru*ption, about the distribution of

the data. In Section 1.5.4, we discussed the distinction between the discriminaflve

and the generative upprou"n", to classification. Here we shall adopt a geretaTffe
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Notethatin(4.57)wehavesimplyrewrittenthe.posteriorprobabilitiesinan
equivalent form, and so the appearanà tr ttr" logistic sigmoid may seem rather vac-

uous. However, it will have signif,can"" prouid"d a(x). takes a simple functional

form. we shall shortly considercituutions in which a,(x) is a linear function of x, in

which 
"ur" 

,hË;;;".i". probability is governed by a generalized linear model.

For the case of K > 2 classes' we have

p( xlCn)PGn)
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p(crl") :

D1n(''lci)n9i
exp(ar) (4.62)

0
I 0

I
D3 exP(a';

which is known as lhe normalizecl exponential and can be regarded as a multiclass

Ë"""r"iir.ii"n of rhe rogirti" sigmoid. Here rhe quanrities a4 are defined by

ak:rn(p(xlc)n9xD' @'63)

The normalized exponential is also known as the softmax function, as it represents

a smoothed version of lh" '*u^' function because, \f op >> ai fot all .j I k, then

p(Crlx) - 1, andP(Crlx) - 0'

we now investigate-ihe consequences of choosing specific forms for the class-

conditional densities, 1;;iilg fl.ri at continuous input variables x and then dis-

cussing briefly the case of discrete inputs'

4.2.1 Continuous inPuts

Let us assume that the class-conditional densities are Gaussian and then explore

the resulting form for ir," p"rt"ri", probabilities. To start with, we shall assume that

all classes share the *u*"Luu.iunôe matrix. Thus the density for class c6 is given

by

1 1 ( t,
p(xlcrc) : 

eùr1rrytrexp t-t(x - 
pr)'!-'f* - r-)) G'64t

Consider first the case of two classes' From (4'57) and (4'58)' we have

p(Crlx) : o(wrx *Tro) @'65)

where we have defined

ïi/ : >.'t (t", - t"r) 
(4'66)

us : -lruT>-t u, +f;ui>-' t"' +m'ffi @'61)

We see that the quadratic terms in x from the exponents of the Gaussian densities

have cancelled (due to the assumption of .o*lnon covariance matrices) leading to

a linear function of x in the argument of the |;Ctic sigmoid' This result is illus-

trared for the case of a two-dimensionar irp;r;;;;; * in"Figure 4.10. The resulting

0
0 0I -1

0I -t

Brigure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue.
On the right is the corresponding posterior probability p(Ctx), which is given by a logistic sigmoid of a linear
function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by p(Cr lx) and a
proportion of blue ink given by p(Czlx) : 1 - p(Cr lx).

decision boundaries conespond to surfaces along which the posterior probabilities
p(Cnlx) are constant and so will be given by linear functions of x, and therefore
the decision boundaries are linear in input space. The prior probabilities p(C6) enter
only through the bias parametelu.rs so that changes in the priors have the effect of
making parallel shifts of the decision boundary and more generally of the parallel
contours of constant posterior probability.

For the general case of K classes we have, from (4.62) and (4.63),

o7,(x) : wflx * tr.'as (4.68)

where we have defined

\M/c

uko

2-'rtn
1

- ru:l>-t 1t'p -llnp(Cp)

(4.6e)

(4.10)

We see that the aa (x) are again linear functions of x as a consequence of the cancel-
lation of the quadratic terms due to the shared covariances. The resulting decision
boundaries, corresponding to the minimum misclassification rate, will occur when
two of the posterior probabilities (the two largest) are equal, and so will be defined
by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each class-
conditional density 'p(xlCn) to have its own covariance matrix !r, then the earlier
cancellations will no longer occur, and we will obtain quadratic functions of x, giv-
ing rise to a quadratic discriminant. The linear and quadratic decision boundaries
are illustrated in Figure 4.1 1.



2OO 4. LINEAR MODELS FOR CLASSIFICATION
4.2. Probabilistic Generative Models 201

the log likelihood function that depend on 7T are

\,{t"lnn -r (r - t.) 1n(1 - zr)}. (4l2)
n:l

Setting the derivative with respect to zr equal to zero and rearranging, we obtain

19. rû rûn: NLt': t:F-t, (4'13)

n:l

where ly'1 denotes the total number of data points in class Ct aîd 1y'2 denotes the total
number of data points in class C2. Thus the maximum likelihood estimate for a- is
simply the fraction of points in class C1 as expected. This result is easily generalized
to the multiclass case where again the maximum likelihood estimate of the prior
probability associated with class C7, is given by the fraction of the training set points
assigned to that class.

Now consider the maximization with respect to pr. Again we can pick out of
the log likelihood function those terms that depend on p, giving

NIN

! 6 t",,t/1xnlt-\,>) : -; Dt,e,- pr)tx-t (** - t") * const. (4.74)
n:L n-1-

Setting the derivative with respect to 1t , to zero and rearranging, we obtain

(4.7s)

which is simply the mean of all the input vectors x,, assigned to class Q. By a

similar argument, the corresponding result for 1t, is given by

.ô/

!{t - i.)",
n:L
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Figure 4.11 The left-hand plot shows the class'conditional densities for three classes each having a Gaussian

distribution, coloured t"iili$î,ïî ù'àlit'*îtrl il; rââÀà siàen classes have the same covariance matrix'

The right_hano ptot snowiÀ" ôbii"rponoing posieiioi piôo"oititi"s, in which the RGB corour vector represents

the oosterior probabitities for the respective tnree tlâJsJ;. il;à;;i;ion boundaries are also shown' Notice that

the boundary between the red and green cfasses, wÀicn naue the same covariance matrix' is linear' whereas

i'r.là." nàt*àân the other pairs of classes are quadratic'

4.2.2 Maximum likelihood solution

oncewehavespecifiedaparametricfunctionalformfortheclass-conditional
densities p(*lct"),we can then âetermine the values of the parameters, together with

,d;;i;; iùr! piouuuili i* eic*l,,using maxj.mum likelihood. This requires a data

set comprisi.rg observation. oi "iro"g 
*ith th"it corresponding class labels.

consider first the case of two classes, each having i Gaussian class-conditional

density with a shared "àï*iu""" 
matrix, and supposé we have,a data set {x",'t,.,"}

where n : 1,. . ' , N. iltit": 1 denotes class Zi andtn :0 denotes class Cz' we

denotetheprior"ru"p'JuJirityp(c') : ?T' so thatp(c2): r- r' Foradatapoint

x' from clàss Cr, we have tn : I and hence

p(x.,Ct) : p(C)p(x*lC,) : n'A'l(x'lpt' E)'

Similarly for class C2, wëhave tn: 0 and hence

p(xn,Cz) : p(C2)p(x^lCr) : (1 - zr)//(x ^lt"r'E)'
Thus the likelihood function is given by

N

p(t,Xlzr, Ft,Fz,r) : II ln\tf(x^lp'r,>)l'" [(1 -r)Jrf (x'lp'''E))t-t" (4"71)

n:1

where t : (fr,...,tru)t. As usual, it is. convenient to maximize the log of the

likelihood function. iàiriA"r first the maximization with respect to n" The terms ln

1
Itz: Nz

which again is the mean of all the input vectors x, assigned to class L2.
Finally, consider the maximum likelihood solution for the shared covariance

matrix X. Picking out the terms in the log likelihood function that depend on X, we
have

rNlN

-;>,r,ln lxl - ;>1n(*n - p,)")-'(*, - tr)
n:I n:1-

rNlN

-*flt -tn)rnl>l - *fft - h)\xn- pr)'D-'(xn- trz)
n:7 n:1-

: -+r' l>l - f,t 1r-'s\ @l7)

l.L
:#Ë',*'

(4.76)
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1 5- G* - t-tr)(xn - pr)'
,l\t 4- n€Cz

using the standard result for the maximum likelihood solution for a Gaussian distri

bution,weseethat):S,whichrepresentsaweightedaverageofthecovariance
;;;;t associated with each of the two classes separately'

This result i, 
"urify 

f^i"nded to the K class problem to obtain the coresponding

maximum likelihood solutions for the parametàrs in which each class-conditional

density is Gaussian with a shared covariànce matrix. Note that the approach of fitting

Gaussian distributions to the classes is not robust to outliers, because the maximum

likelihood estimation of a Gaussian is not robust'

4.2.3 Discrete features

Letusnowconsiderthecaseofdiscretefeaturevaluesri.Forsimplicity,we
U"gin ïy fooking at Uinu'y feature Yuluî r' € {0 ' 

i } and discuss the extension to

more generat Oiscrete ieaiures strortty. 
^If 

there aie D-inputs, then a seneral distrib-

ution woutd "o.r.rponiîàî-i^i|" 
iiz" numbers for eaôh class' coT iai ning 2D - r

inà"p"na*t uuriuut", ioue to the summation constraint). Because this grows expo-

nentially with the nu-t"' of features' we might seek a T9t: t"tqi"ted representa-

tion.HerewewillmakethenaiveBayesassumptioninwhich'thefeaturevaluesare
treated as independeri,.""aiti"r"d on the class c*. Thus we have class-conditional

distributions of the form
D

p@lCù :fruî;(r - t'no)'-'i (4'81)

i:7

which contain D independent pafameters for each class. Substituting into (4'63) then

gives 
D

or(*) : L,{*nrn p'xt' i (7 - 'n) 
In(1 - l'uù} +rnp(Cp) @'82)

i:r
whichagainarelinearfunctionsof theinputvaluesri. Forthecase of K:2classes'

we can alternatively consider the logistic tig*oia for.ulation given bv G'57)' Anal-

ogous results are obtained for discret" uuriuùf", each of wfrich can t'ake M > 2
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2 classes) or softmax (K > 2 classes) activation functions. These are particular cases

of a more general result obtained by assuming that the class-conditional densities
p\lCn) are members of the exponential family of distributions.

Using the form (2.194) for members of the exponential family, we see that the
distribution of x can be written in the form

p(*lÀr) : h(x)s(Àr)exp {À[u(x)] . '(+.s:)

We now restrict attention to the subclass of such distributions for which u(x) : v.
Then we make use of (2.236) to introduce a scaling parameter s, so that we obtain
the restricted set of exponential family class-conditional densities of the form

(4.84)

Note that we are allowing each class to have its own parameter vector Àr but we are

assuming that the classes share the same scale parameter s.

For the two-class problem, we substitute this expression for the class-conditional
densities into (4.58) and we see that the posterior class probability is again given by
a logistic sigmoid acting on a linear function a(x) which is given by

a(x) : (À1 - À2)rx + lne(À1) - lne(À2) -F lnp(C1) -Inp(C2). (4.85)

Similarly, for the K-class problem, we substitute the class-conditional density ex-
pression into (4.63) to give

ol,(x) : À[x + he(À6) +rnp(Cp) (4.86)

and so again is a linear function of x.

4.3. Probabilistic Discriminative Models

For the two-class classification problem, we have seen that the posterior probability
of class Cy caî be written as a logistic sigmoid acting on a linear function of x, for a
wide choice of class-conditional distributions p("lcn), Similarly, for the multiclass
case, the posterior probability of class C7, is given by a softmax transformation of a
linear function of x. For specific choices of the class-conditional densities p(xlCn),
we have used maximum likelihood to determine the parameters of the densities as

well as the class priors p(C6) and then used Bayes' theorem to find the posterior class
probabilities.

However, an alternative approach is to use the functional form of the generalized
linear model explicitly and to determine its parameters directly by using maximum
likelihood. We shall see that there is an eff,cient algorithm flnding such solutions
known as iterative reweighted least squares, or IRZS.

The indirect approach to f,nding the parameters of a generalized linear model,
by fitting class-conditional densities and class priors separately and then applying

where we have defined

c,)

s1

Sz

Nt I ("" - Fr)(x" - tt,)r

N1

t\r
1

t/,Sr* Sz
N

fùeUl

(4.78)

(4.1e)

(4.80)

ii
l

,l

l

I

p(xtÀ*, 
") 

: ln (:") e(À7,) exp {l^t"}

Exercise 4.10

Sectiort 2.3.7

Section 8.2.2

Exercise 4.1 I states

4.2,4 ExPonential familY

As we have seen, for both Gaussian distributed and discrete inputs, the postenor

class probabilities are g;;ty generalized lin"à, *oà"rt with logistic sigmoid (K =


