

Figure 4.8 Illustration of the Mark 1 perceptron hardware. The photograph on the left shows how the inputs were obtained using a simple camera system in which an input scene, in this case a printed character, was illuminated by powerful lights, and an image focussed onto a 20×20 array of cadmium sulphide photocells, giving a primitive 400 pixel image. The perceptron also had a patch board, shown in the middle photograph, which allowed different configurations of input features to be tried. Often these were wired up at random to demonstrate the ability of the perceptron to learn without the need for precise wiring, in contrast to a modern digital computer. The photograph on the right shows one of the racks of adaptive weights. Each weight was implemented using a rotary variable resistor, also called a potentiometer, driven by an electric motor thereby allowing the value of the weight to be adjusted automatically by the learning algorithm.

> Aside from difficulties with the learning algorithm, the perceptron does not provide probabilistic outputs, nor does it generalize readily to K > 2 classes. The most important limitation, however, arises from the fact that (in common with all of the models discussed in this chapter and the previous one) it is based on linear combinations of fixed basis functions. More detailed discussions of the limitations of perceptrons can be found in Minsky and Papert (1969) and Bishop (1995a).

> Analogue hardware implementations of the perceptron were built by Rosenblatt, based on motor-driven variable resistors to implement the adaptive parameters w_j . These are illustrated in Figure 4.8. The inputs were obtained from a simple camera system based on an array of photo-sensors, while the basis functions ϕ could be chosen in a variety of ways, for example based on simple fixed functions of randomly chosen subsets of pixels from the input image. Typical applications involved learning to discriminate simple shapes or characters.

> At the same time that the perceptron was being developed, a closely related system called the adaline, which is short for 'adaptive linear element', was being explored by Widrow and co-workers. The functional form of the model was the same as for the perceptron, but a different approach to training was adopted (Widrow and Hoff, 1960; Widrow and Lehr, 1990).

Probabilistic Generative Models 4.2.

We turn next to a probabilistic view of classification and show how models with linear decision boundaries arise from simple assumptions about the distribution of the data. In Section 1.5.4, we discussed the distinction between the discriminative and the generative approaches to classification. Here we shall adopt a generative Figure 4.9 Plot of the logistic sigmoid function $\sigma(a)$ defined by (4.59), shown in red, together with the scaled probit function $\Phi(\lambda a)$, for $\lambda^2 = \pi/8$, shown in dashed blue, where $\Phi(a)$ is defined by (4.114). The scaling factor $\pi/8$ is chosen so that the derivatives of the two curves are equal for a = 0.

> approach in which we model the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$, as well as the class priors $p(\mathcal{C}_k)$, and then use these to compute posterior probabilities $p(\mathcal{C}_k|\mathbf{x})$ through Bayes' theorem. Consider first of all the case of two classes. The posterior probability for class C_1 can be written as

> > $p(\mathcal{C}$

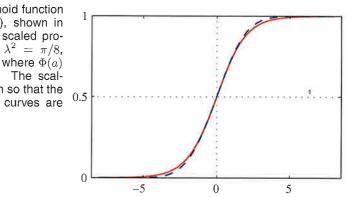
where we have defined

which is plotted in Figure 4.9. The term 'sigmoid' means S-shaped. This type of function is sometimes also called a 'squashing function' because it maps the whole real axis into a finite interval. The logistic sigmoid has been encountered already in earlier chapters and plays an important role in many classification algorithms. It satisfies the following symmetry property

as is easily verified. The inverse of the logistic sigmoid is given by

and is known as the logit function. It represents the log of the ratio of probabilities $\ln \left[p(\mathcal{C}_1 | \mathbf{x}) / p(\mathcal{C}_2 | \mathbf{x}) \right]$ for the two classes, also known as the log odds.

4.2. Probabilistic Generative Models



$$C_1|\mathbf{x}) = \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1) + p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
$$= \frac{1}{1 + \exp(-a)} = \sigma(a)$$
(4.57)

$$a = \ln \frac{p(\mathbf{x}|\mathcal{C}_1)p(\mathcal{C}_1)}{p(\mathbf{x}|\mathcal{C}_2)p(\mathcal{C}_2)}$$
(4.58)

and $\sigma(a)$ is the *logistic sigmoid* function defined by

$$\sigma(a) = \frac{1}{1 + \exp(-a)}$$
 (4.59)

$$\sigma(-a) = 1 - \sigma(a) \tag{4.60}$$

$$a = \ln\left(\frac{\sigma}{1-\sigma}\right) \tag{4.61}$$

4. LINEAR MODELS FOR CLASSIFICATION

Note that in (4.57) we have simply rewritten the posterior probabilities in an equivalent form, and so the appearance of the logistic sigmoid may seem rather vacuous. However, it will have significance provided $a(\mathbf{x})$ takes a simple functional form. We shall shortly consider situations in which a(x) is a linear function of x, in which case the posterior probability is governed by a generalized linear model.

For the case of K > 2 classes, we have

$$p(\mathcal{C}_k | \mathbf{x}) = \frac{p(\mathbf{x} | \mathcal{C}_k) p(\mathcal{C}_k)}{\sum_j p(\mathbf{x} | \mathcal{C}_j) p(\mathcal{C}_j)}$$
$$= \frac{\exp(a_k)}{\sum_j \exp(a_j)}$$
(4.62)

which is known as the normalized exponential and can be regarded as a multiclass generalization of the logistic sigmoid. Here the quantities a_k are defined by

$$a_k = \ln\left(p(\mathbf{x}|\mathcal{C}_k)p(\mathcal{C}_k)\right). \tag{4.63}$$

(1 (2))

(1 (5)

(1 66)

The normalized exponential is also known as the softmax function, as it represents a smoothed version of the 'max' function because, if $a_k \gg a_j$ for all $j \neq k$, then $p(\mathcal{C}_k | \mathbf{x}) \simeq 1$, and $p(\mathcal{C}_i | \mathbf{x}) \simeq 0$.

We now investigate the consequences of choosing specific forms for the classconditional densities, looking first at continuous input variables \mathbf{x} and then discussing briefly the case of discrete inputs.

4.2.1 Continuous inputs

Let us assume that the class-conditional densities are Gaussian and then explore the resulting form for the posterior probabilities. To start with, we shall assume that all classes share the same covariance matrix. Thus the density for class C_k is given by

$$p(\mathbf{x}|\mathcal{C}_k) = \frac{1}{(2\pi)^{D/2}} \frac{1}{|\mathbf{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu}_k)^{\mathrm{T}} \mathbf{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu}_k)\right\}.$$
 (4.64)

Consider first the case of two classes. From (4.57) and (4.58), we have

$$p(\mathcal{C}_1|\mathbf{x}) = \sigma(\mathbf{w}^{\mathrm{T}}\mathbf{x} + w_0) \tag{4.65}$$

where we have defined

$$\mathbf{v} = \mathbf{\Sigma}^{-1}(\boldsymbol{\mu}_1 - \boldsymbol{\mu}_2) \tag{4.00}$$

$$v_0 = -\frac{1}{2} \boldsymbol{\mu}_1^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_1 + \frac{1}{2} \boldsymbol{\mu}_2^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_2 + \ln \frac{p(\mathcal{C}_1)}{p(\mathcal{C}_2)}.$$
(4.67)

We see that the quadratic terms in x from the exponents of the Gaussian densities have cancelled (due to the assumption of common covariance matrices) leading to a linear function of x in the argument of the logistic sigmoid. This result is illustrated for the case of a two-dimensional input space x in Figure 4.10. The resulting

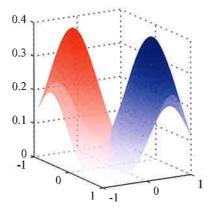


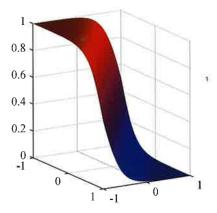
Figure 4.10 The left-hand plot shows the class-conditional densities for two classes, denoted red and blue. On the right is the corresponding posterior probability $p(\mathcal{C}_1|\mathbf{x})$, which is given by a logistic sigmoid of a linear function of x. The surface in the right-hand plot is coloured using a proportion of red ink given by $p(\mathcal{C}_1|\mathbf{x})$ and a proportion of blue ink given by $p(C_2|\mathbf{x}) = 1 - p(C_1|\mathbf{x})$.

decision boundaries correspond to surfaces along which the posterior probabilities $p(\mathcal{C}_k|\mathbf{x})$ are constant and so will be given by linear functions of \mathbf{x} , and therefore the decision boundaries are linear in input space. The prior probabilities $p(C_k)$ enter only through the bias parameter w_0 so that changes in the priors have the effect of making parallel shifts of the decision boundary and more generally of the parallel contours of constant posterior probability. For the general case of K classes we have, from (4.62) and (4.63),

where we have defined

are illustrated in Figure 4.11.

198



$$a_k(\mathbf{x}) = \mathbf{w}_k^{\mathrm{T}} \mathbf{x} + w_{k0} \tag{4.68}$$

$$\mathbf{w}_k = \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k \tag{4.69}$$

$$w_{k0} = -\frac{1}{2} \boldsymbol{\mu}_k^{\mathrm{T}} \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \ln p(\mathcal{C}_k).$$
 (4.70)

We see that the $a_k(\mathbf{x})$ are again linear functions of \mathbf{x} as a consequence of the cancellation of the quadratic terms due to the shared covariances. The resulting decision boundaries, corresponding to the minimum misclassification rate, will occur when two of the posterior probabilities (the two largest) are equal, and so will be defined by linear functions of x, and so again we have a generalized linear model.

If we relax the assumption of a shared covariance matrix and allow each classconditional density $p(\mathbf{x}|\mathcal{C}_k)$ to have its own covariance matrix Σ_k , then the earlier cancellations will no longer occur, and we will obtain quadratic functions of x, giving rise to a quadratic discriminant. The linear and quadratic decision boundaries

4. LINEAR MODELS FOR CLASSIFICATION 200

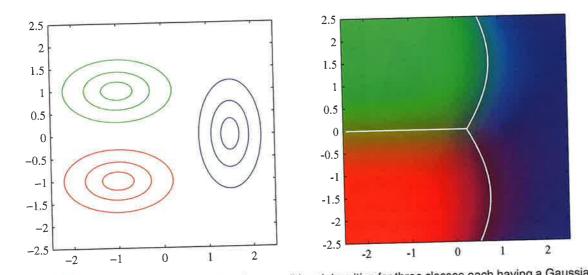


Figure 4.11 The left-hand plot shows the class-conditional densities for three classes each having a Gaussian distribution, coloured red, green, and blue, in which the red and green classes have the same covariance matrix. The right-hand plot shows the corresponding posterior probabilities, in which the RGB colour vector represents the posterior probabilities for the respective three classes. The decision boundaries are also shown. Notice that the boundary between the red and green classes, which have the same covariance matrix, is linear, whereas those between the other pairs of classes are quadratic.

4.2.2 Maximum likelihood solution

Once we have specified a parametric functional form for the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$, we can then determine the values of the parameters, together with the prior class probabilities $p(C_k)$, using maximum likelihood. This requires a data set comprising observations of x along with their corresponding class labels.

Consider first the case of two classes, each having a Gaussian class-conditional density with a shared covariance matrix, and suppose we have a data set $\{\mathbf{x}_n, t_n\}$ where n = 1, ..., N. Here $t_n = 1$ denotes class C_1 and $t_n = 0$ denotes class C_2 . We denote the prior class probability $p(C_1) = \pi$, so that $p(C_2) = 1 - \pi$. For a data point \mathbf{x}_n from class \mathcal{C}_1 , we have $t_n = 1$ and hence

$$p(\mathbf{x}_n, \mathcal{C}_1) = p(\mathcal{C}_1)p(\mathbf{x}_n|\mathcal{C}_1) = \pi \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_1, \boldsymbol{\Sigma}).$$

Similarly for class C_2 , we have $t_n = 0$ and hence

 $p(\mathbf{x}_n, \mathcal{C}_2) = p(\mathcal{C}_2)p(\mathbf{x}_n | \mathcal{C}_2) = (1 - \pi)\mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}).$

Thus the likelihood function is given by

$$p(\mathbf{t}, \mathbf{X}|\pi, \boldsymbol{\mu}_1, \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) = \prod_{n=1}^{N} \left[\pi \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1, \boldsymbol{\Sigma}) \right]^{t_n} \left[(1 - \pi) \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_2, \boldsymbol{\Sigma}) \right]^{1 - t_n}$$
(4.71)

where $\mathbf{t} = (t_1, \dots, t_N)^{\mathrm{T}}$. As usual, it is convenient to maximize the log of the likelihood function. Consider first the maximization with respect to π . The terms in the log likelihood function that depend on π are

Setting the derivative with respect to π equal to zero and rearranging, we obtain

assigned to that class.

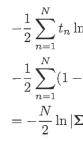
Exercise 4.9

Now consider the maximization with respect to μ_1 . Again we can pick out of the log likelihood function those terms that depend on μ_1 giving

$$\sum_{n=1}^{N} t_n \ln \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_1$$

which is simply the mean of all the input vectors \mathbf{x}_n assigned to class \mathcal{C}_1 . By a similar argument, the corresponding result for μ_2 is given by

have



4.2. Probabilistic Generative Models

$$\sum_{n=1}^{N} \left\{ t_n \ln \pi + (1 - t_n) \ln(1 - \pi) \right\}.$$
 (4.72)

$$\pi = \frac{1}{N} \sum_{n=1}^{N} t_n = \frac{N_1}{N} = \frac{N_1}{N_1 + N_2}$$
(4.73)

where N_1 denotes the total number of data points in class C_1 , and N_2 denotes the total number of data points in class C_2 . Thus the maximum likelihood estimate for π is simply the fraction of points in class C_1 as expected. This result is easily generalized to the multiclass case where again the maximum likelihood estimate of the prior probability associated with class C_k is given by the fraction of the training set points

$$(\mathbf{\Sigma}_{1}, \mathbf{\Sigma}) = -\frac{1}{2} \sum_{n=1}^{N} t_{n} (\mathbf{x}_{n} - \boldsymbol{\mu}_{1})^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x}_{n} - \boldsymbol{\mu}_{1}) + \text{const.}$$
 (4.74)

Setting the derivative with respect to μ_1 to zero and rearranging, we obtain

$$\mu_1 = \frac{1}{N_1} \sum_{n=1}^{N} t_n \mathbf{x}_n \tag{4.75}$$

$$\boldsymbol{\mu}_2 = \frac{1}{N_2} \sum_{n=1}^{N} (1 - t_n) \mathbf{x}_n \tag{4.76}$$

which again is the mean of all the input vectors \mathbf{x}_n assigned to class \mathcal{C}_2 .

Finally, consider the maximum likelihood solution for the shared covariance matrix Σ . Picking out the terms in the log likelihood function that depend on Σ , we

$$\mathbf{n} \left| \mathbf{\Sigma} \right| - \frac{1}{2} \sum_{n=1}^{N} t_n (\mathbf{x}_n - \boldsymbol{\mu}_1)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_1)$$

$$- t_n) \ln \left| \mathbf{\Sigma} \right| - \frac{1}{2} \sum_{n=1}^{N} (1 - t_n) (\mathbf{x}_n - \boldsymbol{\mu}_2)^{\mathrm{T}} \mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_2)$$

$$\mathbf{\Sigma} \left| - \frac{N}{2} \operatorname{Tr} \left\{ \mathbf{\Sigma}^{-1} \mathbf{S} \right\}$$
(4.77)

4. LINEAR MODELS FOR CLASSIFICATION 202

where we have defined

$$\mathbf{S} = \frac{N_1}{N} \mathbf{S}_1 + \frac{N_2}{N} \mathbf{S}_2 \tag{4.78}$$

$$\mathbf{S}_{1} = \frac{1}{N_{1}} \sum_{n \in \mathcal{C}_{1}} (\mathbf{x}_{n} - \boldsymbol{\mu}_{1}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{1})^{\mathrm{T}}$$
(4.79)

$$_{2} = \frac{1}{N_{2}} \sum_{n \in \mathcal{C}_{2}} (\mathbf{x}_{n} - \boldsymbol{\mu}_{2}) (\mathbf{x}_{n} - \boldsymbol{\mu}_{2})^{\mathrm{T}}, \qquad (4.80)$$

Using the standard result for the maximum likelihood solution for a Gaussian distribution, we see that $\Sigma = S$, which represents a weighted average of the covariance matrices associated with each of the two classes separately.

This result is easily extended to the K class problem to obtain the corresponding maximum likelihood solutions for the parameters in which each class-conditional density is Gaussian with a shared covariance matrix. Note that the approach of fitting Gaussian distributions to the classes is not robust to outliers, because the maximum likelihood estimation of a Gaussian is not robust.

4.2.3 Discrete features

S

Let us now consider the case of discrete feature values x_i . For simplicity, we begin by looking at binary feature values $x_i \in \{0,1\}$ and discuss the extension to more general discrete features shortly. If there are D inputs, then a general distribution would correspond to a table of 2^D numbers for each class, containing $2^D - 1$ independent variables (due to the summation constraint). Because this grows exponentially with the number of features, we might seek a more restricted representation. Here we will make the naive Bayes assumption in which the feature values are treated as independent, conditioned on the class C_k . Thus we have class-conditional distributions of the form

$$p(\mathbf{x}|\mathcal{C}_k) = \prod_{i=1}^{D} \mu_{ki}^{x_i} (1 - \mu_{ki})^{1 - x_i}$$
(4.81)

which contain D independent parameters for each class. Substituting into (4.63) then gives

$$a_k(\mathbf{x}) = \sum_{i=1}^{D} \left\{ x_i \ln \mu_{ki} + (1 - x_i) \ln(1 - \mu_{ki}) \right\} + \ln p(\mathcal{C}_k)$$
(4.82)

which again are linear functions of the input values x_i . For the case of K = 2 classes, we can alternatively consider the logistic sigmoid formulation given by (4.57). Analogous results are obtained for discrete variables each of which can take M > 2states.

Exercise 4.11

4.2.4 Exponential family As we have seen, for both Gaussian distributed and discrete inputs, the posterior class probabilities are given by generalized linear models with logistic sigmoid (K =

 $p(\mathbf{x}|$

assuming that the classes share the same scale parameter s. For the two-class problem, we substitute this expression for the class-conditional densities into (4.58) and we see that the posterior class probability is again given by a logistic sigmoid acting on a linear function $a(\mathbf{x})$ which is given by

$$a(\mathbf{x}) = (\boldsymbol{\lambda}_1 - \boldsymbol{\lambda}_2)$$

Similarly, for the K-class problem, we substitute the class-conditional density expression into (4.63) to give

and so again is a linear function of \mathbf{x} .

4.3. Probabilistic Discriminative Models

For the two-class classification problem, we have seen that the posterior probability of class C_1 can be written as a logistic sigmoid acting on a linear function of x, for a wide choice of class-conditional distributions $p(\mathbf{x}|\mathcal{C}_k)$. Similarly, for the multiclass case, the posterior probability of class C_k is given by a softmax transformation of a linear function of x. For specific choices of the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$, we have used maximum likelihood to determine the parameters of the densities as well as the class priors $p(C_k)$ and then used Bayes' theorem to find the posterior class probabilities.

However, an alternative approach is to use the functional form of the generalized linear model explicitly and to determine its parameters directly by using maximum likelihood. We shall see that there is an efficient algorithm finding such solutions known as iterative reweighted least squares, or IRLS. The indirect approach to finding the parameters of a generalized linear model,

by fitting class-conditional densities and class priors separately and then applying

Exercise 4.10

Section 2.3.7

Section 8.2.2

4.3. Probabilistic Discriminative Models

2 classes) or softmax ($K \ge 2$ classes) activation functions. These are particular cases of a more general result obtained by assuming that the class-conditional densities $p(\mathbf{x}|\mathcal{C}_k)$ are members of the exponential family of distributions.

Using the form (2.194) for members of the exponential family, we see that the distribution of \mathbf{x} can be written in the form

$$p(\mathbf{x}|\boldsymbol{\lambda}_k) = h(\mathbf{x})g(\boldsymbol{\lambda}_k)\exp\left\{\boldsymbol{\lambda}_k^{\mathrm{T}}\mathbf{u}(\mathbf{x})\right\}.$$
(4.83)

We now restrict attention to the subclass of such distributions for which u(x) = x. Then we make use of (2.236) to introduce a scaling parameter s, so that we obtain the restricted set of exponential family class-conditional densities of the form

$$|\boldsymbol{\lambda}_k, s\rangle = \frac{1}{s}h\left(\frac{1}{s}\mathbf{x}\right)g(\boldsymbol{\lambda}_k)\exp\left\{\frac{1}{s}\boldsymbol{\lambda}_k^{\mathrm{T}}\mathbf{x}\right\}.$$
 (4.84)

Note that we are allowing each class to have its own parameter vector λ_k but we are

$$(p)^{\mathrm{T}}\mathbf{x} + \ln g(\boldsymbol{\lambda}_1) - \ln g(\boldsymbol{\lambda}_2) + \ln p(\mathcal{C}_1) - \ln p(\mathcal{C}_2).$$
 (4.85)

$$a_k(\mathbf{x}) = \boldsymbol{\lambda}_k^{\mathrm{T}} \mathbf{x} + \ln g(\boldsymbol{\lambda}_k) + \ln p(\mathcal{C}_k)$$
(4.86)