SRS

ECOLE POLYTECHNIQUE
FEDERALE DE LAUSANNE

The Transport Layer: TCP and UDP

Jean-Yves Le Boudec
2018

Contents

1. The transport layer, UDP

2. TCP Basics: Sliding Window and Flow Control
3. TCP Connections and Sockets

4. More TCP Bells and Whistles

5. Where should packet losses be repaired ?

TextboaK! Vi~

Chapter 4: The Transport L?Ver

1. The Transport Layer

Reminder:
network + link + phy carry packets end-to-end
transport layer makes network services available to programs
is in end-systems only, not in routers
In TCP/IP there are mainly two transport layers
UDP (User Datagram Protocol):

TCP (Transmission Control Protocol): error recovery + flow
control

There is no TCPv6 nor UDPv6, the same TCP and UDP are used over
IPv4 and IPv6

UDP Uses Port Numbers

Host

process 0
pa
1265\ /

IP addr=A |— IP network

I IP SA=A DA=B prot=UDP A
UDP TCP source port=1267 TCP UDP
~ , de;titnation port=53 S —
...data...
IP IP
UDP Source Port UDP Dest Port
IP datagram UDP Message Length UDP Checksum UDP datagram

data

The picture shows two processes (= application programs) pa, and pb, are
communicating. Each of them is associated locally with a port, as shown in the
figure.

The example shows a packet sent by the name resolver process at host A, to the
name server process at host B. The UDP header contains the source and destination
ports. The destination port number is used to contact the name server process at B;
the source port is not used directly; it will be used in the response from B to A.

The UDP header also contains a checksum the protect the UDP data plus the IP
addresses and packet length. Checksum computation is not performed by all
systems. Ports are 16 bits unsigned integers. They are defined statically or
dynamically. Typically, a server uses a port number defined statically.

Standard services use well-known ports; for example, all DNS servers use port 53
(look at /etc/services). Ports that are allocated dynamically are called ephemeral.
They are usually above 1024. If you write your own client server application on a
multiprogramming machine, you need to define your own server port number and
code it into your application.

The UDP service is message oriented

UDP service interface
one message, up to 65,535 bytes
destination address, destination port, source address, source port

destination address can be unicast or multicast

UDP service is message oriented
UDP delivers exactly the message (called “Datagram”) or nothing
consecutive messages may arrive in disorder
message may be lost -- application must handle

If a UDP message is larger than the possible maximum size for the IP
layer, MTU, then fragmentation occurs at the IP layer — this is not
visible to the application program

UDP is used via a Socket Library

The socket library provides a programming
interface to TCP and UDP

The figure shows toy client and server UDP client server
programs. The client sends one string of socket(); socket();
chars to the server, which simply receives | |
(and displays) it. bind(); bind();
» socket(AF INET,...) creates an IPv4 > y
socket and returns a number (=file Y Y

descriptor) if successful; sendto(); Fevirom();
socket(AF _INETS,...) creates an IPv6 :
socket

» bind() associates the local port number clo;e()‘
with the socket ’

» sendto() gives the destination IP address,

port number and the message to send : , :
. .| % .JudpClient <destAddr> bonjour les amis
» recvFrom() blocks until one message is o

received for this port number. It returns
the source IP address and port number | % ./JudpServ &
and the message. %

“Connected” UDP Socket

UDP is connectionless, can send

to / receive from any / multiple client server
remote hosts on same socket socket(); socket();
bind(); bind();
connect forces a UDP socket to m;, 0 "1 0
send or receive only from one gonnect(S) qonnect(Q)
. ———» .-
specific remote host. send(msg); |rev(imsg);
send() (instead of sendto()) and |
recv() (instead of recvfrom()). Y
close();

Such a UDP socket is called
: % .ludpClient <destAddr> bonjour les amis
connected, but there is no o

connection (syr-wchr.omzatlon of % JudoSery &
state) as there is with TCP. %

Is there a UDPv6 ?

There is no UDPv6 (nor TCPv6), as the
UDP and TCP protocols are not affected
by the choice of IPv4 or IPv6

However, there are UDPv4 sockets and
UDPV6 sockets, i.e. the service interfaces
are affected.

An application program can decide to

e uselPv4

* uselPv6

e ortosupport both (modern program)

Modern programs use DNS to know what
is available;

If both IPv4 and IPv6 are available, some
systems provide support to help decide
which one is preferred.

socket(AF_INET,...)
or
socket(AF_INETS,...)

client

‘Socket();

h

bin::l();

—
¥

sendto(),

getaddrinfo();

A 4

socket();

l
bind();

a

>

\ 4

close();

close();

sendto(); \

How the Operating System views UDP

[Application program

id=5 / id=3yj UDPSDUs \ id=4

g

IPv6 IPv4 IPv4
socket | socket socket
buffer buffer ubp
port=3245ﬂ port=32456 l port=32654
address= IP
2001:620:618:1a6:3:80b2:9754:1 8.178.151.84

N il

IPv6 packet IPv4 packets

10

How the Operating System views UDP

On the sending side: Operating System sends the UDP datagram as
soon as possible

On the receiving side: Operating System re-assembles UDP
datagram (if required) and keeps it in buffer ready to be read.
Packet is removed from buffer when application reads.

IPv6 sockets are in a different space than IPv4 sockets

11

Lisa’s browser sends DNS query to DNS server, over
UDP. What happens if query or answer is lost ?

user clicks:
http J//www.zurich.lbm.com/RZ.html
Z2 DNS query www.zurich.lbm.com

« name server
DNS answer www.zurich.lbm.com

A 193.5.61.131

UDP UDP

A. Name resolver in browser waits for
timeout, if no answer received before

timeout, sends again

B. Messages cannot be lost because UDP
assures message integrity

C. UDP detects the loss and retransmits

D. Je nesais pas
12

2. TCP Basics: Sliding Window and Flow
Control

In the Internet, packets may be lost
buffer overflow
physical layer errors
UDP application must handle loss
TCP solves the problem once for all

13

TCP offers in-sequence, lossless delivery

What does TCP do ?

TCP guarantees that all data is delivered in sequence and
without loss, unless the connection is broken;

How does TCP work ?
data is numbered (per-byte sequence numbers)

a connection (=synchronization of sequence numbers) is
opened between sender and receiver

TCP waits for acknowledgements; if missing data is detected,
TCP re-transmits

14

TCP Basic Operation 1: showing SEQ and ACK

Al 1 seq 8001:8501 B
) — ~ deliver
2 ack 8501 bytes
| seq8501:9001 8001:8501
, |_5ed9001:9501 -X
. |_seq 9501:10001 o
6 —>
Timeout! |7)é ack 8501
8\‘, seq 8501:9001 deliver
— > bytes
8501:9001
ack 9001
9 deliver
seq 9001:9501 bytes
10 X 9001:10001
15

The previous slide shows A in the role of sender and B of receiver. The application at A sends
data in blocks of 500 bytes. The maximum segment size is 1000 bytes. Ranges such as
8001:8501 mean bytes numbers 8001 to 8500.

Packets 3, 4 and 7 are lost.

B returns an acknowledgement in the ACK field. The ACK field is cumulative, so ACK 8501
means: B is acknowledging all bytes up to (excluding) number 8501.

At line 8, the timer that was set at line 3 expires (A has not received any acknowledgement for
the bytes in the packet sent at line 3). A re-sends data that is detected as lost, i.e. bytes
8501:9001. When receiving packet 8, B can deliver to the application all bytes 8501:9001.

When receiving packet 10, B can deliver bytes 9001:10001 because packet 5 was received and
kept by B in the receive buffer.

16

TCP Basic Operation 1: showing SEQ, ACK and SACK

Al 1 seq 8001:8501 B
) — " deliver
2 ack 8501 bytes
3 |_Sed 8501:9001 8001:8501
4 |_5e49001:9501 ~X
o |_$eq 9501:10001 o
6 >
7 I ack 8501 sack (9501:10001)
g seq 8501:9501 deliver
— > bytes
8501:10001
ack 10001
9 deliver
seq 10001:10501 bytes
10 10001:10501
TcpMaxDupACKs setto 1 at A > >
17

In addition to the ACK field, most TCP implementation also use the SACK field (Selective
Acknowledgement). The previous slide shows the operation of TCP with SACK.

The application at A sends data in blocks of 500 bytes. The maximum segment size is 1000
bytes. Packets 3 and 4 are lost.

At line 6, B is acknowledges all bytes up to (excluding) number 8501.

At line 7, B acknowledges all bytes up to 8501 and in the range 9501:10001. Since the set of
acknowledged bytes is not contiguous, the SACK option is used. It contains up to 3 blocks that
are acknowledged in addition to the range described by the ACK field.

At line 8, A detects that the bytes 8501:9501 were lost and re-sends them. Since the
maximum segment size is 1000 bytes, only one packet is sent.

When receiving packet 8, B can deliver bytes 9001:10001 because packet 5 was received and
kept in the receive buffer.

18

TCP receiver uses a receive buffer = re-sequencing buffer to
store incoming packets before delivering them to
application
Why invented ?

Application may not be ready to consume data

Packets may need re-sequencing; out-of-sequence data is stored

but is not visible to application

4] 1

@ Oy T R W R

Can be read
scq 8001:8501 E
O J 8001:8501 X (received)
| ack 8501 by app
seq 8501:9001 %% 8001:8501
seq 9001:9501
X

| seq 9501:10001

=

ack B501 sack (9501:10001)
seq 8501:9501

—»|

——]

ack 10001

seq 10001:10501

9501:10001

Invisible to app

(cannot be read)

L ;‘ 8001:10001h

19

TCP uses a sliding window

_ . Receive
The receive buffer may overflow if PO Buffer
one piece of data “hangs” W 1
- - P2 —At—

E.g. multiple losses affecting the H P1

same packet P1 P2
This is why the sliding window was
invented

limits the number of data “on the |_Pn

flv” PO again

y W P1P2...Pn|
P1P2...Pn+1

20

How the sliding window works

lower edge =
smallest non
acknowledged
sequence number

upper edge = lower
edge + window size

Only sequence
numbers that are in
the window may be
sent

0123456789101112

EI123456789101112

1234:556789101112

0123456789101112

0

0
0
0

0
0
0
0
0
0

Window size = 4’000 bytes;

1234567891011 12

12314 5/6 7891011 12
1234/5/6 789101112

12345/6789101112

123456789101112
1234567891011 12
1234(56789101112
12345/6789/101112
123456[789/10[1112
1234567891011}12

Vﬁw

one packet is 1’000 bytes

Usable part of the window

21

Lo, $=0
- =<
At time 4, k-
sender...:fff:.@m —
e A=-1, SACK 41.3 =222
t

D.

Buffer

Window size = 4’000 bytes, one packet = 1'000 bytes
Sliding window was initialized at time ¢,

... can send packet 4
... cannot send packet 4

It depends on whether data
was consumed by application

Ich weiss nicht

22

Sliding Window is not sufficient to limit buffer
size at receiver

Data that is received
In-sequence remains
in receive buffer until
consumed by
application (typically
using a socket “read”
or “receive”)

receive buffer
o—> Application reads

A slow application
could cause buffer
overflow

Y

—> Application reads

Window size = 4’000 bytes
One packet = = 1’000 bytes

24

Window Flow Control is used to prevent
receive-buffer overflow

TCP constantly adapts the size of the window by sending “window”
advertisements back to the source.

» Window size is set to available buffer size
» If no space in buffer, window size is setto 0

This is called “Flow Control” = adapt sending rate of source to speed of
receiver

#+ Congestion Control (see later), which adapts rate of source to state
of network

25

=

=

©O O O O O O 0O o o o |0 (o

@)
=
N
w

NN NN

WWwWw w w

13

N = U S S = = a A= E i =a i =
N NN NN NN
W WIWW[Ww| W

4 5 6
4 56

N NN NN NN N NN NN

\I
00
O

cO 00O 0O 0 0O 0 0 0 0 0 O o0

© © © O © © © © v 0o oo o

10
10

10
10
10
10
10

10
10
10
10
10

10

10

11
11

11
11
11
11
11

11
11
11
11
11

11
11

ack = -1, window = 2

ack = 0, window = 2
4 ack = 0, window = 4

ack = 2, window =4

ack = 4, window = 2

ack = 6, window =0

1 unit of data = 1’000 bytes
1 packet = 1’000 bytes

26

N N (O[O W W [W] [P [FP[FTPF] O] O

——— s.read()

ZW s.read()

................... 3-2-10 @ [][][]
e 3-2-10][] < read()
------------ 3-2-10 1 2 [J [0
................... 3-2-10 1 2 gl :
.................. 3-2-10 1 2 B @ [][]
1248 L
3 [8
1 3456ﬁ'ﬁaﬁ(h

free buffer

data acked but not yet consumed

1 unit of data = 1’000 bytes
1 packet = 1°000 bytes 27

TCP Basic Operation, Putting Things Together

A

7

B

X

[
>

bytes

....8500 are available

and consumed

0001 win 4000

8001:8501(500) ack 101 win 6000
2 101:201(100) ack 8501 win 4000
., | 8501:9001(500) ack 201 win 14247
4 9001:9501(500) ack 201 win 14247
5 9501:10001(500) ack 201 win 14247
6\ (0) ack 8501 sack 9001:9501 win 4000
7| 201:251(50) ack 8501 sack 9001:1
g 8501:9001(500) ack 251 win 14247
9| ,
251:401(150) ack 10001 win 2500
70 |+ (0) ack 10001 win 4000
14 10001:10501(500) ack 401 win 14247

> bytes
8501:10000 are
available

»

app
consumes

bytes
8501:10000

> bytes
10001:10500
are available)8

The picture shows a sample exchange of messages. Every packet carries the
sequence number for the bytes in the packet; in the reverse direction, packets
contain the acknowledgements for the bytes already received in sequence. The
connection is bidirectional, with acknowledgements and sequence numbers for each
direction. So here A and B are both senders and receivers.

Acknowledgements are not sent in separate packets (“piggybacking”), but are in the
TCP header. Every segment thus contains a sequence number (for itself), plus an ack
number (for the reverse direction). The following notation is used:

» firstByte”:”lastByte+1 “(“segmentDatalength”) ack” ackNumber+1 “win”
offeredWindowsSise. Note the +1 with ack and lastByte numbers.

At line 8, A retransmits the lost data. When packet 8 is received, the application is
not yet ready to read the data.

Later, the application reads (and consumes) the data 8501:10001. This frees some
buffer space on the receiving side of B; the window can now be increased to 4000.
At line 10, B sends an empty TCP segment with the new value of the window.

Note that numbers on the figure are rounded for simplicity. In real examples we are
more likely to see non-round numbers (between O and 232 -1). The initial sequence
number is not O, but is chosen at random.

29

In the absence of loss,
and on a link with
capacity ¢ packets per
second, the window
size required for
sending at the
maximum possible rate
iS...

Wain = RTT X ¢
C

Wn RTT

W RTT

. Nonecﬁtheabove

A.
B.
C.
(o
D
E. Nonloso

time

30

3. TCP Connections and Sockets

TCP requires that a connection (= synchronization) is opened before
transmitting data
» Used to agree on sequence numbers and make sure buffers and window are
initially empty
The next slide shows the states of a TCP connection:

» Before data transfer takes place, the TCP connection is opened using SYN
packets. The effect is to synchronize the counters on both sides.

» The initial sequence number is a random number.

» The connection can be closed in a number of ways. The picture shows a
graceful release where both sides of the connection are closed in turn.

» Remember that TCP connections involve only two hosts; routers in between
are not involved.
There are many more subtleties (e.g. how to handle connection
termination, lost or duplicated packets during connection setup, etc—
see Textbook sections 4.3.1 and 4.3.2).

32

TCP Connection Phases

application

iy

Release

c o active open

o3

fulla

0w SYN, seqg=x

Q syn_sent| .. >

E SYN seq=y, ack=x+1

O <
o [established] . ack=y+1
= >
- >
© <
(- >
|_
© _ < <
«~ active close
@© . - FIN, seqg=u
- fin_wait_1|. >

ack=u+1

C fin_wait_2|.[

- FIN seq=v

o’ = =

Q time_walt|..[

= ack=v+1

-

)

O

\4

listen| Passive open

_|snc_rcvd

established

close_wait

application close:

“last_ack

JClosed

33

flags

IP header (20 or 40 B + options)i

srce port dest port

sequence number

ack number

TCP
hlen| rsvd| flags window header
checksum urgent pointer (20 Bytes +
. : options)
: options (SACK, .) \ padding i |
segment data (if any) <= MSS bytes

meaning

NS

CWR
ECN
urg
ack
psh
rst
syn
fin

used for explicit congestion notification
used for explicit congestion notification
used for explicit congestion notification
urgent ptr i1s valid
ack field i1s valid
this seg requests a push
reset the connection
connection setup
sender has reached end of byte stream

34

TCP Segment Format

The previous slide shows the TCP segment format.

=the push bit can be used by the upper layer using TCP; it forces TCP on the sending side to create a
segment immediately. If it is not set, TCP may pack together several SDUs (=data passed to TCP by the
upper layer) into one PDU (= segment). On the receiving side, the push bit forces TCP to deliver the
data immediately. If it is not set, TCP may pack together several PDUs into one SDU. This is because of
the stream orientation of TCP. TCP accepts and delivers contiguous sets of bytes, without any
structure visible to TCP. The push bit used by Telnet after every end of line.

= the urgent bit indicates that there is urgent data, pointed to by the urgent pointer (the urgent data
need not be in the segment). The receiving TCP must inform the application that there is urgent data.
Otherwise, the segments do not receive any special treatment. This is used by Telnet to send
interrupt type commands.

= RST is used to indicate a RESET command. Its reception causes the connection to be aborted.

= SYN and FIN are used to indicate connection setup and close. They each consume one sequence
number.

= The sequence number is that of the first byte in the data. The ack number is the next expected
sequence number.

= Options contain for example the Maximum Segment Size (MSS) normally in SYN segments
(negotiation of the maximum size for the connection results in the smallest value to be selected) and
SACK blocks.

=The checksum is mandatory
=The NS, CRW and ECN bits are used for congestion control (see congestion control module).

35

TCP Sockets

TCP is used by means of sockets,

like UDP

However, TCP sockets are more client
complicated because of the need

to open/close a connection s=socket();

Opening a TCP connection
requires one side to listen (this
side is called “server”) and one
side to connect (that side is
called “client”)

bind();

connect();

At 1, client can use the
connection to send or receive
data on this socket

SYN
SYN ACK

server

s1=socket();

bind();

listen();

s2=accept();

5 ACK

©,

36

The figure shows toy client and servers. The client sends a string of chars to
the server which reads and displays it.

socket(AF_INET,...) creates an IPv4 socket and returns a number (=file
descriptor) if successful;
socket(AF INETS,...) creates an IPv6 socket

bind() associates the local port number with the socket

connect() associates the remote IP address and port number with the socket
and sends a SYN packet

send() sends a block of data to the remote destination
listen() declares the size of the buffer used for storing incoming SYN packets;

accept() blocks until a SYN packet is received for this local port number. It
creates a new socket (in pink) and returns the file descriptor to be used to
interact with this new socket

receive() blocks until one block of data is ready to be consumed on this port
number. You must tell in the argument of receive how many bytes at most
you want to read. It returns the number of bytes that is effectively returned
and the block of data. It returns O when the connection was closed by the
other end.

37

A New Socket is —
C ted by client s1=socket();
red
s=socket();
ACCEpt() bind(s1,...);

bind(s,...);

listen(s1,...);

At 2, on server side, a new

socket (s2) is created — will be)
used by server to send / receive el o)

This example shows a simplistic @5; !

program: client sends one l ?
message to server anpl quits; el
server handles one client at a receive(s2,...);
time. >
close(s); -
close(s2);

38

A More Typical
Server

TCP Server typically uses
parallel threads of execution
to handle several TCP
connections + to listen to
Incoming connections

client

server

socket();

socket();

bind();

bind();

listen();

connect();

—

E\Tpto;

send(); "\\\\ |
| e\
RN |
close(); . receive();
v |
R |
close();

39

How the Operating System views TCP Sockets

[Application program J
App Connection
Connection ?aﬂg data requests daﬁg
id= requests i s NG =7
IPv4 IPv4 IPv4 IPv6 IPv6
socket socket socket socket socket
buffer buffer

ddress=128.178.151.84

2001:620:618:1a6:3:8002,97%4:1

IPv4 packets

IPv6 packets

40

TCP Connections and Segments

-------- TCP hdr TCP data

| IP hdr IP data = TCP segment

TCP uses port numbers like UDP eg. TCP port 80 is used for web server.

A TCP connection is identified by: srce IP addr, srce port, dest IP addr,
dest port.

TCP-PDUs (called TCP segments) have a maximum size (called MSS). 536
bytes by default for IPv4 operation (576 bytes IPv4 packet), 1220 by
default for IPv6 operation (1280 bytes IPv6 packets)

TCP, not the application, chooses how to segment data
TCP segments should not be fragmented at source

Modern OSs use TCP Segmentation Offloading (TSO) : the TCP code in the OS sends a
possibly large block of data to the network interface card (NIC). Segmentation is

performed in the NIC with hardware assistance (reduces CPU consumption of TCP). .

TCP Offers a Streaming Service

Streaming Service: TCP accumulates bytes in send buffer until it
decides to create a segment

independent of how application writes data

On receiver side, data accumulates in receive buffer until
application reads it — data is not delineated, several small pieces of
data sent by A may be received by B as a single block —and
conversely, a single block sent by A may be received by B as
multiple blocks.

A side effect is head of the line blocking : If one packet sent by A is
lost, all data following this packet is delayed until the loss is
repaired.

42

For which types of apps is the streaming
service a drawback ?

A. an app using http/1 with one TCP connection per object

O o

T I o mmo

an app using http/2 with one TCP connection in total

. areal time streaming application that sends one new packet every

Mmsec

. AandB

Aand C
BandC
All
None

No lo sé

43

A TCP server is, by definition...

A. ...an application program that
does listen() and accept() on a
TCP socket

B. ...an application program that
does receive() on a TCP socket

C. ...an application program that
does send() on a TCP socket

D. Asv éépw

44

Why both TCP and UDP ?

Most applications use TCP rather than UDP, as this avoids re-inventing error recovery
in every application

But some applications do not need error recovery in the way TCP does it (i.e. by
packet retransmission)

For example: Voice applications / PMU streaming
Q. why ?

For example: an application that sends just one message, like name resolution
(DNS).
Q. Why ?

For example: multicast (TCP does not support multicast IP addresses)

46

4. More TCP Bells and Whistles

TCP has been constantly improved since its inception in 1974. For
example, problems to be solved are

When to send a packet (application may write 1 byte into the
socket; should TCP make one packet ?) -> Nagle’s algorithm
prevents making many small packets.

When to send an ACK when there is no data to send in return ?

When to increase the window size (silly window syndrome
avoidance)?

How to detect packet loss

How to choose initial sequence numbers (SYN cookies) to avoid
denial of service attack by SYN flooding)

How to avoid three way handshake

We will see only the last three in detail; see textbook section

4.3.3 for the ones we don’t see here. .

We could say that TCP declares a packet lost when a
duplicate ACK is received with a SACK field. Is it a good idea ?

A. Yes because it is likely "eq B00LB8N1

that there is some
missing data

ack 8501
seq 8501:9001

>4

seq 9501:10001 - X

seq 8501:9501 k

soq 2001:9501

B. No as it may cause
superfluous
retransmissions (some
data could simply be
late -- out of order)

|ow Sta e N

C. No because an ACK also
could be lost

D. N’ ouzhon ket.

49

Fast Retransmit

Principle: when n duplicate ACKs are received, declare a loss
(Duplicate ACK = a TCP packet where the ACK value repeats a previously received
ACK value)

The lost data is inferred from the SACK blocks
n =TcpMaxDupACKs is set by the Operating System (typically or 3)

retransmit
PL P2 P3 P4 P5 P6 P3 P7
\ ack=2000
sxck =3000:400/
ack/~=?
ack=2000
sack =8000:50
ack=7000
Jcks2000 ack=£000

sack/£~3000:6000

1 2 3 4 5 6
all segments are 1000 bytes; TcpMaxDupACKs = 3 -

Loss Detection in TCP also uses timers

“Fast retransmit” detects most losses but not all
bursts of losses are not detected
last packets that are lost are not detected
isolated packets that are lost are not detected

TCP also uses a retransmit timer, set for every packet transmission

when one timer expires this is interpreted as a severe loss (loss
of channel). All timers are reset and all data is marked as
needing retransmission.

51

Round Trip Estimation

Why ? The retransmission timer must be set at a value slightly larger

than the round trip time, but too much larger

What ? RTT estimation computes an upper bound RTO on the round
trip time

How srtt = smoothed RTT

rtt := last measured RTT

rttvar = Ylerror bound

1 1
a_giﬁ_z

rttvar = (1 — 3) X rttvar + 3 x |srtt — rtt|
srit = (1 — a) x srtt + a X rtt

rto = srtt + 4 x rttvar

52

Sample RTO

seconds
14
12 T ’/’RTO
10 T o
5T SampledRTT
6 - ///
s - /,
1 &
0 4

Seconds
ﬂ-
<

11
21
31
41
51
61
71
81
91
101
111
121
131

53

When does Fast Retransmit Fail ?

Extremely rarely, it is quasi-optimal

B. It fails to detect the loss extremely rarely, but it may often take
a long time to detect.

C. When one of the last segments of an application layer block is
lost, fast retransmit does not detect it.

D. It may often fail due to packet re-ordering

F. g_q?JciY

54

RACK (Recent ACK)

RACK is an alternative to Fast Retransmit. Bases retransmission
decisions on timings, not on sequence numbers.

Assumes sender records all packet transmission times.

Sender declares a packet with send time t; as lost whenever an ack
is received for a packet sent at time t, > t; +reo_wnd

Furthermore, a RACK-timeout = RACK-RTT + reo_wnd is started at
every packet transmission; packet is declared lost if timer expires.

RACK-RTT is the RTT measured for the last acked packet

reo_wnd (reordering window) is 1 msec by default, can be updated
if re-ordering is detected.

56

retransmit

PL P2 P3 P4 P5 PG P3 P7
to ty Ay

Assume t, — t3 > 1msec.

At time a, , P4 is acked, but no ack for P3 was received; P3 is declared
lost because we assume here that re-ordering is at most by 1 msec.

57

SYN Cookies

Why ? mitigate impact of SYN flood attack: lots of bogus SYN packets
from invalid source addresses sent to a server.

When a TCP server receives a SYN packet, it should remember the
details of the connection (source IP address, port, seq number) and
stores them in kernel space. If SYNs are bogus, they remain stored
until timeout occurs. The listen queue is full and legitimate SYN
packets are dropped. Server is out !

What ? with SYN cookies, TCP server does not keep state information
after receiving a SYN packet. State is encoded in the Seg Number field,
using a cryptographic function and returned to client (the “cookie”). If
SYN is valid, 3" ack contains the state in the ACK.

58

SYN Cookies Encode State in Seq of SYN ACK

application

g %-. active open 1isten| Passive open
o
ﬁ % SYN, seg=x
g syn_sent| .. * |snec revd
S SYN seq#y,) ack=x+1 -
) < g

E} established . ack=y+1

qn?': > lestablishe

v >

o <

State (called SYN cookie) is written in y

v = (5 bit) t mod 32 | | (3 bits) MSS encoded in SYN | | (24 bits)
cryptographic hash of secret server key, of t (timestamp) and client IP
address and port number, the server IP address and port number.

Server drops state and sends SYN cookie=y in SYN ACK. Client sends
ack=y+1. Server verifies that hash is valid; if so creates socket, using
the MSS recovered from the cookie.

If SYN was bogus, no ack follows and damage is reduced to loss of

computation but no loss of listen queue availability.
59

If the ACK (3) is never sent, a server that does not
implement SYN cookies will
1) retransmit SYN ACK

2) keep state information until timeout occurs

application
.§ %. active open passive open
o0
$” — ==
3 SYN seg=y, ack=x+l
8 .
o [established ; ack=y+1
A. 1 ﬁ | = s Y @ *| lestablished|
C —
C. 1and?2
D. None
.
E. FAHE

60

With SYN cookies, the response time of SYN-ACK

iS...
A. Larger than without SYN cookies

B. Smaller than without SYN cookies

C. The same
D. | weiss nid

62

TCP Fast Open (TFO)

Why ? Avoid latency of 3-way handshake when opening repeated
connections.

How? TCP clients caches a cookie that contains authentication tag t =
MAC (k, c) computed by server with secret key k (unknown to client)
and client IP address ¢

TFO TCP Client TFO TCP Server
Client can send data in SYN packet. SYN
>
o tag t in TCP option
When recelvmg SYN ahd tag t, server GET /hello.htm
knows that this client is a real one and
< SYN ACK
not spoofed. Server can send data already server data
in SYN-ACK.
ACK
g
< ACK
more data

MAC= Message Authentication Code

64

5. Error Recovery

We have seen how TCP repairs losses
We now discuss why this is so, and sometimes why it is not so

65

Packet losses occur due to

» error detection by MAC

» buffer overflow in bridges and

repaired.

A

routers
» Other exceptional errors may
occur too
Therefore, packet losses mus
A R1 R2
P1
— | 5 P
P3
T P4
P3 is missing T
[<l—
P35 ——| P3
—— P3

The Layered Model Transforms Errors into Packet Losses

This can be done either
» end to end : host A sends 10

packets to host B. B verifies if all
packets are received and asks for
A to send again the missing ones.

» or hop by hop

Rl&/ R2

B
* i,
\ P2 P1
A{P3 is missinlg\>
—Pr—| P3
\»\le\» P3
\»\le\>
\

The Case for End-to-end Error Recovery

The end-to-end philosophy of the internet says: keep intermediate
systems as simple as possible

IP packets may follow parallel paths, this is incompatible with hop-by-
hop recovery.

» R2 seesonly 3 out of 7 packets but should not ask R1 for re-transmisison

A R2

== R R4

R3

67

The Case for Hop-By-Hop Error Recovery

There are also arguments in favour of hop-by-hop strategy. To
understand them, we will use the following result.

Capacity of erasure channel: consider a channel with bit rate R that
either delivers correct packets or loses them. Assume the loss
process is stationary, such that the packet loss rateisp € [0; 1].
The capacity is R(1 — p) packets/sec.

This means in practice that, for example, over a link at 10Mb/s that
has a packet loss rate of 10% we can transmit up to 9 Mb/s of
useful data.

Furthermore, this capacity is obtained by a scheme (such as TCP)
which retransmits lost packets.

68

The Capacity of the End-to-End Path

We can now compute the capacity of an end-to-end path with
both error recovery strategies.

Assumptions: same packet loss rate p on k links; same nominal
bit rate R. Losses are independent.

Q. compute the capacity with end-to-end and with hop by hop
error recovery.

k links

] R5 R6 [

R1 R2 R3 R4

— Loss probability p 7
Transmission rate R

B

69

The capacity Cqwith hop-by-hop error recovery is ...

A

R1

k links

R2

R3

—

R4

Loss probability p
Transmission rate R

A C; =R —p)*
B. C{=R(1-p)
C. C; =R(1—-kp)
D. Nao sei

/

R5

R6

B

70

End-to-end Error Recovery is Inefficient when

Packet Error Rate is high

A

o]
o
o _—
o

—==

R1

k links
R2 R3 R4 R5 R6
— Loss probability p 7
Transmission rate R

k | Packetloss |C, (end-to- |C, (hop-

rate end) by-hop)
10 |0.05 0.6 R 0.95R
10 |0.0001 0.9990 R 0.9999 R

Q. How can one reconcile the conflicting arguments for and against

hop-by-hop error recovery ?

72

Where is Error Recovery located in the TCP/IP
architecture ?

The TCP/IP architecture assumes that

1. The MAC layer provides error—free packets to the network
layer

2. The packet loss rate at the MAC layer (between two routers,
or between a router and a host) must be made very small. It
is the job of the MAC layer to achieve this.

3. Error recovery must also be implemented end-to-end.

Thus, packet losses are repaired:

At the MAC layer on lossy channels (wireless)

WiFi repairs losses with a repetition mechanism similar to
TCP but simpler, window = 1 packet

In the end systems (transport layer by TCP or application layer
if UDP is used).

74

Conclusion
The transport layer in TCP/IP exists in two flavours

reliable and stream oriented : TCP
unreliable and message based: UDP

TCP uses : sliding window and selective repeat; window flow
control; congestion control — see later

TCP offers a strict streaming service and requires 3 way handshake

Other transport layer protocols exist but their use is marginal: e.g.
SCTP (reliable + message based)

Some application layer frameworks are a substitute to TCP for
some applications: e.g. QUIC (reliable and “message” based — see
Appli), websockets (see lab).

75

