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A WIDENING PRODUCTIVITY GAP

ITRS
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TWO TRENDS: CMPS AND MPSOCS

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 4

Chip MultiProcessor
(CMP)

MultiProcessor
System-on-Chip 

(MPSoC)

Intel, Tilera, STM Qualcomm, Samsung, TI, Apple

Blurred boundaries…



CMPS VS. MPSOCS

CMP MPSoC

Fully homogeneous Very heterogeneous

Fully programmable cores Mostly fixed-function cores

Tile-based Subsystem-based

Regular chip layout Heavily customized layout

Emphasis on ease of 
programming

Emphasis on 
power/performance/cost

For: general processing, 
programmable accelerators

For: embedded applications, 
optimized accelerators
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MPSOC SYSTEMS BECOME VERY COMPLEX

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 6

TI OMAP 4460, 2011



INTEGRATION ISSUE ARISES

�Many cores

�If MPSoC, heterogeneous cores
�Different pinouts
�Different clocking (+DVFS)
�Different physical sizes
�Different power/temperature budgets
�Different communication needs

�How to integrate, verify?

�System interconnect

DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS10/4/18 7



ON-CHIP INTERCONNECTS
Federico ANGIOLINI
LSI EPFL
2018

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 8



TRADITIONAL ANSWER: BUSES

� Shared bus topology

� Aimed at simple, cost-effective integration

Bus
Slave 1

Master 1

Slave 3

Master 2

Slave 2

Master 3

� Typical example: ARM AMBA AHB
� Arbitration among multiple masters
� Single outstanding transaction allowed
� If wait states are needed, everybody waits
� Slow!
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BUS EVOLUTION OCCURRED

Bus

Bus

Bus

Bus

Bus

Bus

Bus

Cr
os
sb
ar

Bus++ v2.0
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Protocol
evolution

Topology
evolution



STILL OUTSTANDING PROBLEMS

�Performance scalability

� Ease of design and verification
� ~2 years time to market (89% late!)

�Physical design issues
� Routing congestion
�Wire propagation delay
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Numetrics Management Systems



AND OVERALL, THE DESIGN LOOKS LIKE…

Chip for mobile multimedia apps (under NDA)
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THE RISE OF NETWORKS-ON-CHIP (NOCS)

� Packet-based 
communication

� NIs packetize 
transactions

� Switches route 
transactions across
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Benini-De 
Micheli, 2002

Dally, 2001



NOC OPERATION EXAMPLE

CPU
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e1. CPU request (AHB, OCP, ... pinout)

2. Packetization and transmission

3. Routing

4. Receipt and unpacketization (AHB, OCP, ... pinout)

5. Device response (if needed)

6. Packetization and transmission

7. Routing

8. Receipt and unpacketization

switch

switch
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NOC HERITAGE: A LOGICAL STEP

� On-chip version of large area networks
� WAN, MAN, LAN, PAN, …

� Next logical step in interconnect evolution

� Scalable, robust, efficient, well-understood

� Different trade-offs compared to large area networks
� Wire parallelism is cheap vs. cables
� Latency, power, area must be orders of magnitude lower
� Buffers must be extremely small
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NOC ADOPTION TRENDS
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Sonics Whitepaper, 2012



HOW TO DESIGN NOCS
Federico ANGIOLINI
LSI EPFL
2018
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NOCS HAVE MANY DESIGN AXES

� How to connect things: topology

� How to inject and eject messages: network 
interface architecture (incl. packetization
policy)

� How to pass packets along: router architecture 
(incl. switching policy, flow control policy)

�Where to send packets: routing policy
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NoC

NETWORK INTERFACE ARCHITECTURE (XPIPES)
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PACKET TRANSMISSION
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Header

Header

Header

Payload

Payload 1Payload 2Payload 3Payload 4…

(1) Read request

(2) Single write request or single read response

(3) Burst write request or burst read response
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Ta
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DATA
BYTE
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INTEROPERABLE PACKET FORMAT
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ROUTER ARCHITECTURE (XPIPES)

� Input and/or output buffering

� Wormhole switching

� Supports multiple flow control policies
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Crossbar

Allocator
Arbiter

Routing
Flow Control



DEADLOCKS
� Routing level

� Message level

Initiator Target

Request

Response
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APPLICATION-SPECIFIC
NOC DESIGN

Federico ANGIOLINI
LSI EPFL
2018
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CMP VS. MPSOC INTERCONNECTS

CMP MPSoC

Regular interconnect (mesh, torus) Custom topology

Unpredictable workload Mostly predictable workloads

Synthetic workloads may be 
representative

All usage scenarios must be 
checked

Emphasis on routing, bisection 
bandwidth

Emphasis on latency, simulated 
performance

Homogeneous NoC architecture Locally optimized architecture

Requires cache coherence Requires core interoperability

Regular, short wiring Irregular, long wiring
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MANY CHALLENGES TO TACKLE
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Sonics Whitepaper, 2012



…WHICH IS EXPENSIVE
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Sonics Whitepaper, 2012

MPSoC architects 
spend ~28% of time 
defining the NoC

Company A: € 76 M 
(profitable)
Company B: € 56 M 
(maybe bankrupt)

3 months



STANDARD DESIGN FLOW
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Design
Requirements

Hardware
Description

Synthesis
Placement

Routing

ProcessorsMemoriesI/O
NoC Inter-

connect

■ Designer picks NoC with expertise + guesswork
■ NoC is iterated on multiple times based on simulation and 

synthesis feedback
■ Electronic Design Automation (EDA) Tools exist but most 

difficult work is manual



AN AUTOMATED DESIGN FLOW
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NoC RTL

NoC

Models

Comm

Specs

IP Core
RTL

Back-End

Flow

Floorplan
with NoC

Arch
Specs

NoC

Library

Chip

Topology
Generation,

Floorplanning

Existing know-how, IP 
and tools

NoC extensions

Floorplan
(optional)

Simulation

Design Point
Selection



REFERENCE ALGORITHM

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 30

Partitioning (core-
to-switch 

assignment)

Partitioning (core-
to-switch 

assignment)

Design point 
generation

Partitioning (core-
to-switch 

assignment)

Switch-to-switch 
connectivity 

establishment

Post-processing 
(trimming, 

simulation, …)

go to next design point

Dump output

1

2

3

4

5

Murali, DAC 2004
Murali, ASPDAC 2005

Bertozzi, IEEE TPDS 2005

Other seminal works:
Pinto, ICCD 2003

Srinivasan, ICCD 2004



1 - DESIGN POINT GENERATION

� Identify NoC parameter permutations
� NoC flit width
� Switch count in each V/f island
� Potentially any others: buffering, VCs…

� Sweep grain impacts runtime, exploration 
thoroughness
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EXAMPLE DESIGN POINTS
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Core to switch 
assignment such that 
communication 
constraints can be met

2 - DETERMINE SWITCHES IN V ISLANDS
� Operating frequency bounds maximum switch 

radix, thus max radix different in each VI
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f = 600 MHz → 
Switch = 9x9

f = 850 MHz → 
Switch = 3x3 f = 700 MHz → 

Switch = 7x7
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VI 2
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FIFO

VI 0

VI 1
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EXAMPLE TOPOLOGY AT END OF STEP 2
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Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 1 Core 8

Core 18 Core 9

Core 17 Core 10

Core 16 Core 15 Core 14 Core 13 Core 12 Core 11

S1

S8 S7
S6

S3S2

S5

S4



3 – FLOW PATH FINDING
� Establish physical links, consider
� Cost function: latency, marginal power (to be minimized)
� Constraints: max switch radix, minimum bandwidth
� Deadlock freedom
� Account for voltage/frequency domains
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Many paths 
available ! 

MEM

ARM DSP
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EXAMPLE TOPOLOGY AT END OF STEP 3
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Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 1 Core 8

Core 18 Core 9

Core 17 Core 10

Core 16 Core 15 Core 14 Core 13 Core 12 Core 11
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4, 5 – DESIGN POINT FINALIZATION
� Topology is now defined

�Optional optimizations and checks:
� Trim 1x1 switches
� Can trim flit width where excessive for requirements
� Can refine buffer sizing to optimize 

performance/area/power
� Can simulate for performance verification and iterate

�Dump topology to disk
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EXAMPLE TOPOLOGY AT END OF STEP 5
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Core 2 Core 3 Core 4 Core 5 Core 6 Core 7

Core 1 Core 8

Core 18 Core 9

Core 17 Core 10

Core 16 Core 15 Core 14 Core 13 Core 12 Core 11
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S5
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NOC FLOORPLANNING
Federico ANGIOLINI
LSI EPFL
2018
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ROUTING CONGESTION IS AN ISSUE
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Arteris Whitepaper



WIRING DELAY IS AN ISSUE
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ITRS 2004



TRAVERSABLE WIRE LENGTH IS GOING DOWN

� In 40 nm, at same frequency, wires must be 20-
25% shorter than in 65 nm
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THEREFORE, FLOORPLAN INPUT IS ESSENTIAL
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ACCOUNTING FOR FLOORPLAN

� Optional input

� Not to be reshuffled
� Too many constraints (thermal, pins, analog macros…)

� Insert NoC in the floorplan
� Figure out ideal NoC component positions
� Identify links still too long, pipeline them
� Estimate power according to library model

� Designer can always tweak to taste

� Output floorplan can be exported towards 
P&R tools
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OPTIMIZED FLOORPLAN EFFECT
� Collaboration with Teklatech

� Different 40nm reference floorplans

� NoCs inserted by iNoCs with optimizations

� 15-20% savings in demanding use cases
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IMPACT ON SYNTHESIS ALGORITHM

� Floorplan is updated simultaneously with topology 
synthesis (wires accounted in exploration)

� Two floorplanning steps:

� doInitialFloorplanning(): places blocks in ideal positions. 
Can be iterated and refined during topology building.

� doFloorplanning(): moves blocks from ideal positions to suitable 
locations (empty areas). Can be executed once as final pass.
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EXAMPLE: INPUT FLOORPLAN
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OUTPUT FLOORPLAN (NO OVERLAPS)
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OUTPUT FLOORPLAN (OVERLAPS)
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WIRE LENGTH ESTIMATION
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LINK PIPELINING

�Wire segmentation by topology design
� Put more switches, or place them closer

�Wire segmentation by pipeline insertion
� Flops/relay stations to break links

� Take advantage of pre-existing converters
� If e.g. frequency converter is instantiated along link, space it

evenly to help with segmenting
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EXAMPLE: LINK LENGTH DISTRIBUTION
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Original benchmark
max f = 400 MHz

Overclocked benchmark
max f = 800 MHz



CONCLUSIONS
Federico ANGIOLINI
LSI EPFL
2018
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CONCLUSIONS

� IP-based design becoming prevalent
� CMPs, MPSoCs

� System interconnect is evolving towards NoCs
� Scalable performance, better physical design properties

� EDA tooling needed to help with NoC design
� Devise best interconnect from high-level specifications
� Accounting for floorplan is important

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 54


