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TWO TRENDS: CMPS AND MPSOCS

Chip MultiProcessor MultiProcessor
(CMP) System-on-Chip
(MPSoC)
Intel, Tilera, STM Qualcomm, Samsung, Tl, Apple

Blurred boundaries...
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CMPS VS. MPSOCS

Fully homogeneous Very heterogeneous

Fully programmable cores  Mostly fixed-function cores

Tile-based Subsystem-based

Regular chip layout Heavily customized layout
Emphasis on ease of Emphasis on

programming power /performance /cost
For: general processing, For: embedded applications,

programmable accelerators optimized accelerators
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MPSOC SYSTEMS BECOME VERY COMPLEX
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INTEGRATION ISSUE ARISES

Many cores

If MPSoC, heterogeneous cores

>Different pinouts

>Different clocking (+DVFS)
>Different physical sizes

>Different power/temperature budgets

>Different communication needs

How to integrate, verify?

System interconnect
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TRADITIONAL ANSWER: BUSES

Shared bus topology

Aimed at simple, cost-effective integration

Master 1 Master 2 Master 3

= 2

Typical example: ARM AMBA AHB

> Arbitration among multiple masters

> Single outstanding transaction allowed

> |If wait states are needed, everybody waits
> Slow!
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BUS EVOLUTION OCCURRED
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Topology
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STILL OUTSTANDING PROBLEMS

Performance scalability

Ease of design and verification
> ~2 years time to market (89% latel)

Numetrics Management Systems

Physical design issues
> Routing congestion

> Wire propagation delay
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AND OVERALL, THE DESIGN LOOKS LIKE. ..
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THE RISE OF NETWORKS-ON-CHIP (NOCS)

Packet-based
communication
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s "&9 NlIs packetize
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Dally, 2001

Benini-De
Micheli, 2002
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NOC OPERATION EXAMPLE

switch

Network
Interface

switch

1.  CPU request (AHB, OCEP, ... pinout)

2. Packetization and transmission switch /O

Network
Interface

3.  Routing

4.  Receipt and unpacketization (AHB, OCP, ... pinout)
5.  Device response (if needed)

6.  Packetization and transmission

7.  Routing

8.  Receipt and unpacketization
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NOC HERITAGE: A LOGICAL STEP

On-chip version of large area networks
> WAN, MAN, LAN, PAN, ...

Next logical step in interconnect evolution
Scalable, robust, efficient, well-understood

Different trade-offs compared to large area networks
> Wire parallelism is cheap vs. cables
> Latency, power, area must be orders of magnitude lower
> Buffers must be extremely small
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NOC ADOPTION TRENDS

Topologies considered for next
On-chip communications network

Number of Cores when a Commercial NoCs become
important consideration over internal development

(0]
2 100%
Don'tkn 80%
16%
Coherent 60%
Interconnect
40%
20%

0%
<=5 6-10 11-20 2140 41-60 61-80 81-100 >100

Number of Cores

Sonics Whitepaper, 2012
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NOCS HAVE MANY DESIGN AXES

How to connect things: topology

How to inject and eject messages: network
interface architecture (incl. packetization

policy)

How to pass packets along: router architecture
(incl. switching policy, flow control policy)

Where to send packets: routing policy
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NETWORK INTERFACE ARCHITECTURE (XPIPES)
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Initiator

PACKET TRANSMISSION

(1) Read request

-

(2) Single write request or single read response

Payload 4 Payload 3 Payload 2 Payload 1 -

(3) Burst write request or burst read response
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| INTEROPERABLE PACKET FORMAT

request header

BYTE
SAIS ENABLES

request payload

response header

response payload
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| ROUTER ARCHITECTURE (XPIPES)

Allocator
Arbiter

Crossbar

Routing
Flow Control

“* Input and/or output buffering
“* Wormhole switching

“» Supports multiple flow control policies

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS i
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CMP VS. MPSOC INTERCONNECTS

Regular interconnect (mesh, torus) Custom topology

Unpredictable workload Mostly predictable workloads
Synthetic workloads may be All usage scenarios must be
representative checked

Emphasis on routing, bisection Emphasis on latency, simulated
bandwidth performance

Homogeneous NoC architecture  Locally optimized architecture
Requires cache coherence Requires core interoperability

Regular, short wiring Irregular, long wiring
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MANY CHALLENGES TO TACKLE

Two Biggest Challenges when Implementing an
On-Chip Network

|
Meeting product specifications (PPA) i 45%

Balance frequency, latency, throughput 42%
Integrating IP elements/sub-systems 37%
Getting timing closure 35%
Managing routing congestion 25%
Do notknow s 8%

Other F 3%

Sonics Whitepaper, 2012
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... WHICH IS EXPENSIVE

Estimated Time Spent Designing, Modifying, Verifying
On-Chip Networks

17% MPSoC architects

16%
L35 spend ~28% of time
10% o o
o defining the NoC
7% 7% 6% 6% 6% 6%
u u u u u 3% 19% u Sonics Whitepaper, 2012
(-
0% 5% 10% 20% 30% 40% 50% 60% 70% 80% 90%+ Don't
know
Z /\ —Company A Company A: €76 M
g —=Company B .
s (profitable)
£3 months Company B: € 56 M
(maybe bankrupt)

4 5 6 7 8 91011121314 1516 1718 192021 2223 2425 2627282930

Month
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STANDARD DESIGN FLOW

NoC Inter-
connect

Synth
Design Hardware ynthesis
: Placement
Requirements Description
Routing

m Designer picks NoC with expertise + guesswork

Pr M

m NoC is iterated on multiple times based on simulation and
synthesis feedback

m Electronic Design Automation (EDA) Tools exist but most
difficult work is manual
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AN AUTOMATED DESIGN FLOW

. Existing know-how, IP
and tools
. NoC extensions

[\'[-]®

Librar

Generation, Simulation

loorplannin NoC RTL
-Design Point -

Selection |?orplan
“'h 0

Topology
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REFERENCE ALGORITHM
| @

Murali, DAC 2004
. Murali, ASPDAC 2005
Bertozzi, IEEE TPDS 2005

Other seminal works:
Pinto, ICCD 2003

- . Srinivasan, ICCD 2004

Dump output @

go to next design point
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| - DESIGN POINT GENERATION

|dentify NoC parameter permutations
> NoC flit width
> Switch count in each V /f island

> Potentially any others: buffering, VGCs...

Sweep grain impacts runtime, exploration
thoroughness
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EXAMPLE DESIGN POINTS
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2 - DETERMINE SWITCHES IN V ISLANDS

Operating frequency bounds maximum switch
radix, thus max radix different in each VI

f =600 MHz >

oS Switch = 9x9
‘5 X—®
/

Core to switch \
assignment such that

commu.nication x N Vs
CPOFEY D be met
Switch = 3x3 d X f=700 MHz >

Switch = 7x7

-

S ee e
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EXAMPLE TOPOLOGY AT END OF STEP 2

s

N
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3 — FLOW PATH FINDING

Establish physical links, consider
> Cost function: latency, marginal power (to be minimized)
> Constraints: max switch radix, minimum bandwidth
> Deadlock freedom

> ACCOUnT for vald A /-c AAAAAAAAAA Ao ctine

Many paths

available !
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EXAMPLE TOPOLOGY AT END OF STEP 3

Cof» o
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4,5 — DESIGN POINT FINALIZATION

Topology is now defined

Optional optimizations and checks:
> Trim 1x1 switches
> Can trim flit width where excessive for requirements

> Can refine buffer sizing to optimize
performance /area/power

> Can simulate for performance verification and iterate

Dump topology to disk
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EXAMPLE TOPOLOGY AT END OF STEP 5
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ROUTING CONGESTION IS AN ISSUE

Arteris Whitepaper
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WIRING DELAY IS AN ISSUE

Gate delay gets better, wire delay gets worse

100 .
e Global wire

1 O —]  —— :(:aecmn Rensaters / )
3 Global wire
g S ——— with repeaters
3

L ocal
0.1 Gate delay

250 180 130 90 65 4t 32

Process Technology Node (nm)
Delay for Metal 1 and Global Wiring versus Feature Size ITRS 2004
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TRAVERSABLE WIRE LENGTH IS GOING DOWN

In 40 nm, at same frequency, wires must be 20-
25% shorter than in 65 nm
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THEREFORE, FLOORPLAN INPUT IS%SSENTIAL
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ACCOUNTING FOR FLOORPLAN

Optional input
> Too many constraints (thermal, pins, analog macros...)
> Figure out ideal NoC component positions

Designer can always tweak to taste

Output floorplan can be exported towards
P&R tools
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OPTIMIZED FLOORPLAN EFFECT

10/4/18

Collaboration with Teklatech
Different 40nm reference floorplans
NoCs inserted by iNoCs with optimizations

15-20% savings in demanding use cases
90,00 s 580

80,00
70,00
60,00
50,00 -
40,00 A
30,00 +
20,00
10,00 -
0,00 -

M Best Comm/Worst IR

Power{mw)

M Best Comm/Best IR

B Worst Comm/Worst IR
m Worst Comm/Best IR
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IMPACT ON SYNTHESIS ALGORITHM

Floorplan is updated simultaneously with topology
synthesis (wires accounted in exploration)

Two floorplanning steps:

> doInitialFloorplanning(): places blocks in ideal positions.
Can be iterated and refined during topology building.

> doFloorplanning (): moves blocks from ideal positions to suitable
locations (empty areas). Can be executed once as final pass.
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EXAMPLE: INPUT FLO

FLASH |- - -

IMPROC2 |-

PE2

ORPLAN

P3

MEM4

L L2c

MEM1
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OUTPUT FLOORPLAN (NO OVERLAPS)

P3 o

FLASH |- - -

IMPROC2 |-

MEM1
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OUTPUT FLOORPLAN (OVERLAPS)

: P3
FLASH |-~ : =

IMPROC2 |-
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WIRE LENGTH ESTIMATION

. P3
FLASH | -

@q MEM2 r =3

. ,/ a
IMPROC2 ,i | /] M E M4
. s —

MEM1
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LINK PIPELINING

“* Wire segmentation by topology design

> Put more switches, or place them closer

“* Wire segmentation by pipeline insertion
> Flops/relay stations to break links

|| s || o[ | flsur, ||

STALL STALL STALL

“* Take advantage of pre-existing converters

If e.g. frequency converter is instantiated along link, space it
evenly to help with segmenting
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Number of links

Number of links

EXAMPLE: LINK LENGTH DISTRIBUTION

832

832 _ 168 768 768 .
Original benchmark
416 max f = 400 MHz
0
n o o~ m g n w o o~ un
o n o h N n 0n N ¥ n un W v n ~
o o - o~ o~ (] pk < n ok w o ~
Link Length (mm)
960
960 - 896 896
480 Overclocked benchmark
192
. [ 1 max f = 800 MHz
n — ™~ m < n
o A - h o A o o ¥ A
© o — o~ m e

Link Length (mm)

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 52



Federico ANGIOLINI

CONCLUSIONS | wsieen

2018

10/4/18 DESIGN TECHNOLOGIES FOR INTEGRATED SYSTEMS 53




CONCLUSIONS

IP-based design becoming prevalent
> CMPs, MPSoCs

System interconnect is evolving towards NoCs

> Scalable performance, better physical design properties

EDA tooling needed to help with NoC design

> Devise best interconnect from high-level specifications

> Accounting for floorplan is important
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