Resource sharing

Giovanni De Micheli

Integrated Systems Centre
EPF Lausanne

e Centr'e Si

ated Systems Centre

(g

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Obijectives
A Motivation and problem formulation
A Flat and hierarchical graphs
A Functional and memory resources

A Extension to module selection

(c) Giovanni De Micheli

Allocation and binding

¢ Allocation:

A Number of resources available
¢ Binding:

A Relation between operations and resources
¢ Sharing:

A Many-to-one relation
¢ Optimum binding/sharing:

A Minimize the resource usage

(c) Giovanni De Micheli

Binding

¢ Limiting cases:

A Dedicated resources

v One resource per operation
v No sharing

A One multi-task resource
v ALU

A One resource per type

(c) Giovanni De Micheli

Optimum sharing problem

¢ Scheduled sequencing graphs

A Operation concurrency well defined

¢ Consider operation types independently
A Problem decomposition

A Perform analysis for each resource type

(c) Giovanni De Micheli

Compatibly and conflicts

¢ Operation compatibility: "

x=atb

y=c+d 1

A Same type 2

s=x+y

t=x-y 3

A Non concurrent v

z=a+t

¢ Compatibility graph:
A Vertices: operations
A Edges: compatibility relation

¢ Conflict graph:

A Complement of compatibility graph

(c) Giovanni De Micheli

Compatibility graph

2

Conflict graph

fel

Example

t1 x=atb y=c+d 1 2
t2 S=Xty t=x-y 3 4
t3 z=att 5
Conflict Compatibility

fe]

Coloring Partitioning

o

2

)

ALU1:1,3,5
ALU2: 2,4

(c) Giovanni De Micheli

Compatibility and conflicts

¢ Compatibility graph:
A Partition the graph into a minimum number of cliques

A Find clique cover number 4 (G:)

¢ Conflict graph:

A Color the vertices by a minimum number of colors.

A Find the chromatic number x (G_)

¢ NP-complete problems:

A Heuristic algorithms

(c) Giovanni De Micheli

Data-flow graphs
(flat sequencing graphs)

¢ The compatibility/conflict graphs have special properties:

A Compatibility
v Comparability graph

A Conflict
v Interval graph

¢ Polynomial time solutions:

A Golumbic’ s algorithm

A Left-edge algorithm

(c) Giovanni De Micheli 9

Perfect graphs

& Comparability graph:

A Graph G (V, E) has an orientation G (V, F) with the transitive
property

(vy v)€F and (v,v)€F — (v,v)€eF

¢ Interval graph:

A Vertices correspond to intervals
A Edges correspond to interval intersection

A Subset of chordal graphs

v Every loop with more than three edged has a chord

(c) Giovanni De Micheli

10

4
TIME 3

TIME 4 b

(c) Giovanni De Micheli

Example

11

10

TIME 2

TIME 3

TIME 4

12

(c) Giovanni De Micheli

Left-edge algorithm

¢ Input:
A Set of intervals with left and right edge

A A set of colors (initially one color)

¢ Rationale:

A Sort intervals in a list by left edge
A Assign non overlapping intervals to first color using the list

AWhen possible intervals are exhausted,
increase color counter and repeat

(c) Giovanni De Micheli

13

Example

8 IIIIIIIIIII —
N————— I 1 sl
6 IIIIII — — — —
5 IIIIII I — e — — — —
IIIIII I7I2|IIIII,
< <
3I — I e ——
2II IIIIIIII
= ©
——] n I I
OI IIIIIIIIII
=
[o%
©
e
(@)]
[
[
o
@)

Coloring

Colored conflict

14

graph

(c) Giovanni De Micheli

Left-edge algorithm

LEFT_EDGE(/) {
Sort elements of /in a list L in ascending order of /;

c=0;
while (some interval has not been colored) do {
S=0;
r=0;
while (exists s € L such that /> r) do {
s = First element in the list L with ;> r;
S=SU({s}
r=rs
Delete s from L;
}
c=c+1;
Label elements of S with color c;
}

(c) Giovanni De Micheli

15

Hierarchical sequencing graphs

¢ Hierarchical conflict/compatibility graphs:
A Easy to compute

A Prevent sharing across hierarchy

¢ Flatten hierarchy:
ABigger graphs

A Destroy nice properties

(c) Giovanni De Micheli

16

Example

a
+
TIME 1 a a

TIME 2 (

TIME 3 \)

TIME 4

|
Al
A\
TIME 5 a m v a 4*1
WAR!

TIME 6

TIME 7

(c) Giovanni De Micheli 17

Example

-
TIME 1 il a
TIME 2 ﬁ;{g ﬁ'\
TIME 3 \ \/

) b
TIME 4

T

(c) Giovanni De Micheli

Register binding problem

¢ Given a schedule:

A Lifetime intervals for variables
A Lifetime overlaps

¢ Conflict graph (interval graph):
A Vertices < variables
A Edges < overlaps
A Interval graph

¢ Compatibility graph (comparability graph):

A Complement of conflict graph

(c) Giovanni De Micheli

19

Register sharing in data-flow graphs

¢ Given:
A Variable lifetime conflict graph

¢ Find:
A Minimum number of registers storing all the variables

¢ Key point:

A Interval graph
v Left-edge algorithm (polynomial-time complexity)

(c) Giovanni De Micheli

20

] 2
TIME 1
1 \ 72
3 6
TIME 2 C’é @
z4
z3
TIME 3 Y
\\ ZC
TIME 4 25 Céﬁ
(a)

(c) Giovanni De Micheli

Example

z1 z2

z3 z4

z5 z6
(b)

21

Register sharing
general case

¢ lterative conflicts:

A Preserve values across iterations

A Circular-arc conflict graph
v Coloring is intractable

¢ Hierarchical graphs:

A General conflict graphs
v Coloring is intractable

¢ Heuristic algorithms

(c) Giovanni De Micheli

22

| |
[e = |
1 [
[|
[|
I 1 L 4 4 I I
[[
[[
[> > _1 |1
| |
| |

N~
L > N s

N < ©

N N N

~ (ap] Tp)

N N N

IIIIIIIIIIIIIIIIIIIIIIIIIII -

Te}

y
2 3 \(v 6
|
Zajl
/
z6

; |
z1 z
TIME 2 3
4
\
z5
|
Rl

TIME 1
TIME 3
TIME 4

23

(c) Giovanni De Micheli

Example
Variable-lifetimes and circular-arc conflict graph

(c) Giovanni De Micheli

Bus sharing and binding

¢ Find the minimum number of busses to accommodate all
data transfer

¢ Find the maximum number of data transfers for a fixed
number of busses

¢ Similar to memory binding problem

(c) Giovanni De Micheli 25

Example

(2 71
TIME 1

Z1 \ rar=

z2

3 6
TIME 2 z3
z4

z4

z3 4
7
TIME 3 @ é

\ z5

\ yav)
TIME 4 25 Cés

z6

(a) (®)
¢ One bus:
A 3 variables can be transferred

& Two busses:
AAll variables can be transferred

(c) Giovanni De Micheli

(c)

26

Module selection problem

¢ Extension of resource sharing
A Library of resources:
A More than one resource per type
¢ Example:
A Ripple-carry adder
A Carry look-ahead adder

¢ Resource modeling:

A Resource subtypes with
v (area, delay) parameters

(c) Giovanni De Micheli

27

Module selection solution

¢ ILP formulation:

A Decision variables
v Select resource sub-type
v Determine (area, delay)

¢ Heuristic algorithm
A Determine minimum latency with fastest resource subtypes
A Recover area by using slower resources on non-critical paths

(c) Giovanni De Micheli

28

¢ Multipliers with:
A (Area, delay)=(5,1)and (2,2)
¢ Latency bound of 5

(c) Giovanni De Micheli

Slow multipliers
save area

29

Example 2

-\
Ay 0
///// / N
- - /
(1,1)

|
I
| (2
I
|
|
|
|

TIME 4

¢ Latency bound of 4

A Fast multipliers for { v, v2, v3}

A Slower multiplier can be used elsewhere
v Less sharing

¢ Minimum-latency design uses fast multipliers only
A Impossible to use slow multipliers

(c) Giovanni De Micheli

30

¢ Obijectives
A Data path generation
A Control synthesis

(c) Giovanni De Micheli

Module 2

31

Data path synthesis

¢ Applied after resource binding

¢ Connectivity synthesis:
A Connection of resources to multiplexers busses and registers
A Control unit interface

Al/O ports
¢ Physical data path synthesis

A Specific techniques for regular datapath design

v Regularity extraction

(c) Giovanni De Micheli

32

Example

(c) Giovanni De Micheli

REGISTERS :
a .
3 .
dx .
" x [¢ — — —= enable
> v E
" u n
—D" r1 :
> r2 .
i N\ /ﬁ:::::::\.\wé'\ /ﬁ:::::::::E Mux control
I | |
(— — — — _E ALU control (+,-,<)
‘ R i
DATA-PATH CONTROL-UNIT

33

Control synthesis

¢ Synthesis of the control unit

¢ Logic model:

A Synchronous FSM

¢ Physical implementation:
A Hard-wired or distributed FSM

A Microcode

(c) Giovanni De Micheli

34

TIME 3 Q
\ s
TIME 4 65
3 reset reset
S
(NoPIn 3,7,9,11

(c) Giovanni De Micheli

Summary

¢ Resource sharing is reducible to vertex coloring or to
clique covering:
A Simple for flat graphs

Alntractable, but still easy in practice, for other graphs

A Resource sharing has several extensions:
v Module selection

¢ Data path design and control synthesis are conceptually
simple but still important steps

A Generated data path is an interconnection of blocks
A Control is one or more finite-state machines

(c) Giovanni De Micheli 36

