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Module 1

¢ Obijectives
A Motivation and problem formulation
A Flat and hierarchical graphs
A Functional and memory resources

A Extension to module selection
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Allocation and binding

¢ Allocation:

A Number of resources available
¢ Binding:

A Relation between operations and resources
¢ Sharing:

A Many-to-one relation
¢ Optimum binding/sharing:

A Minimize the resource usage
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Binding

¢ Limiting cases:

A Dedicated resources

v One resource per operation
v No sharing

A One multi-task resource
v ALU

A One resource per type
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Optimum sharing problem

¢ Scheduled sequencing graphs

A Operation concurrency well defined

¢ Consider operation types independently
A Problem decomposition

A Perform analysis for each resource type
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Compatibly and conflicts

¢ Operation compatibility: "

x=atb

y=c+d 1

A Same type 2

s=x+y

t=x-y 3

A Non concurrent v

z=a+t

¢ Compatibility graph:
A Vertices: operations
A Edges: compatibility relation

¢ Conflict graph:

A Complement of compatibility graph
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Example

t1 x=atb y=c+d 1 2
t2 S=Xty t=x-y 3 4
t3 z=att 5
Conflict Compatibility
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ALU1:1,3,5
ALU2: 2,4
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Compatibility and conflicts

¢ Compatibility graph:
A Partition the graph into a minimum number of cliques

A Find clique cover number 4 ( G:)

¢ Conflict graph:

A Color the vertices by a minimum number of colors.

A Find the chromatic number x ( G_)

¢ NP-complete problems:

A Heuristic algorithms
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Data-flow graphs
(flat sequencing graphs)

¢ The compatibility/conflict graphs have special properties:

A Compatibility
v Comparability graph

A Conflict
v Interval graph

¢ Polynomial time solutions:

A Golumbic’ s algorithm

A Left-edge algorithm
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Perfect graphs

& Comparability graph:

A Graph G (V, E) has an orientation G ( V, F) with the transitive
property

(vy v)€F and (v,v)€F — (v,v)€eF

¢ Interval graph:

A Vertices correspond to intervals
A Edges correspond to interval intersection

A Subset of chordal graphs

v Every loop with more than three edged has a chord
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Example
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Left-edge algorithm

¢ Input:
A Set of intervals with left and right edge

A A set of colors (initially one color)

¢ Rationale:

A Sort intervals in a list by left edge
A Assign non overlapping intervals to first color using the list

AWhen possible intervals are exhausted,
increase color counter and repeat
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Coloring

Colored conflict
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Left-edge algorithm

LEFT_EDGE(/) {
Sort elements of /in a list L in ascending order of /;

c=0;
while (some interval has not been colored) do {
S=0;
r=0;
while ( exists s € L such that /> r) do {
s = First element in the list L with ;> r;
S=SU({s}
r=rs
Delete s from L;
}
c=c+1;
Label elements of S with color c;
}
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Hierarchical sequencing graphs

¢ Hierarchical conflict/compatibility graphs:
A Easy to compute

A Prevent sharing across hierarchy

¢ Flatten hierarchy:
ABigger graphs

A Destroy nice properties
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Example
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Example
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Register binding problem

¢ Given a schedule:

A Lifetime intervals for variables
A Lifetime overlaps

¢ Conflict graph (interval graph):
A Vertices < variables
A Edges < overlaps
A Interval graph

¢ Compatibility graph (comparability graph):

A Complement of conflict graph
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Register sharing in data-flow graphs

¢ Given:
A Variable lifetime conflict graph

¢ Find:
A Minimum number of registers storing all the variables

¢ Key point:

A Interval graph
v Left-edge algorithm (polynomial-time complexity)
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z1 z2

z3 z4

z5 z6
(b)
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Register sharing
general case

¢ lterative conflicts:

A Preserve values across iterations

A Circular-arc conflict graph
v Coloring is intractable

¢ Hierarchical graphs:

A General conflict graphs
v Coloring is intractable

¢ Heuristic algorithms
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Example
Variable-lifetimes and circular-arc conflict graph
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Bus sharing and binding

¢ Find the minimum number of busses to accommodate all
data transfer

¢ Find the maximum number of data transfers for a fixed
number of busses

¢ Similar to memory binding problem
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Example

( 2 71
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(a) (®)
¢ One bus:
A 3 variables can be transferred

& Two busses:
AAll variables can be transferred
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Module selection problem

¢ Extension of resource sharing
A Library of resources:
A More than one resource per type
¢ Example:
A Ripple-carry adder
A Carry look-ahead adder

¢ Resource modeling:

A Resource subtypes with
v ( area, delay ) parameters
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Module selection solution

¢ ILP formulation:

A Decision variables
v Select resource sub-type
v Determine ( area, delay)

¢ Heuristic algorithm
A Determine minimum latency with fastest resource subtypes
A Recover area by using slower resources on non-critical paths
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¢ Multipliers with:
A (Area, delay)=(5,1)and (2,2)
¢ Latency bound of 5
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Slow multipliers
save area
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Example 2
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¢ Latency bound of 4

A Fast multipliers for { v, v2, v3}

A Slower multiplier can be used elsewhere
v Less sharing

¢ Minimum-latency design uses fast multipliers only
A Impossible to use slow multipliers
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¢ Obijectives
A Data path generation
A Control synthesis
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Module 2
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Data path synthesis

¢ Applied after resource binding

¢ Connectivity synthesis:
A Connection of resources to multiplexers busses and registers
A Control unit interface

Al/O ports
¢ Physical data path synthesis

A Specific techniques for regular datapath design

v Regularity extraction
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Example
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Control synthesis

¢ Synthesis of the control unit

¢ Logic model:

A Synchronous FSM

¢ Physical implementation:
A Hard-wired or distributed FSM

A Microcode
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Summary

¢ Resource sharing is reducible to vertex coloring or to
clique covering:
A Simple for flat graphs

Alntractable, but still easy in practice, for other graphs

A Resource sharing has several extensions:
v Module selection

¢ Data path design and control synthesis are conceptually
simple but still important steps

A Generated data path is an interconnection of blocks
A Control is one or more finite-state machines
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