
QUANTUM PHYSICS III
Solutions to Problem Set 3 6 October 2017

1. Completeness of Coherent states

1. To compute the integral ∫
d2αe−|α|

2
α∗nαm , (1)

it is convenient to use polar coordinates,

Re α = r cos φ , Im α = r sin φ . (2)

The integral becomes∫
dφdr re−r2

rn+mei(m−n)φ =

∫ ∞

0
dre−r2

rn+m+1
∫ 2π

0
dφei(m−n)φ

= 2πδnm

∫ ∞

0
drr2n+1e−r2

= πδnmn! .
(3)

2. Recall that the coherent state |α〉 is related to the eigenstates of the harmonic oscil-
lator via

|α〉 = e−
|α|2

2

∞∑
n=0

αn

√
n!
|n〉 . (4)

Hence, we can write ∫
d2α

π
|α〉〈α| =

∫
d2α

π
e−|α|

2
∑
n,m

αn

√
n!

α∗m
√

m!
|n〉〈m|

=
∑
n,m

|n〉〈m|
√

n!
√

m!

1
π

∫
d2αe−|α|

2
αnα∗m =

∑
n,m

|n〉〈m|
√

n!
√

m!
n!δnm =

∑
n

|n〉〈n| = 1 .
(5)

3. Using eq. (4), we have

〈α|α′〉 = e−
|α|2

2 −
|α′ |2

2

∞∑
n,m=0

α∗n
√

n!

α
′m

√
m!
〈n|m〉

= e−
|α|2

2 −
|α′ |2

2

∞∑
n=0

(α∗α′)n

n!
= e−

1
2 |α−α

′ |2ei Im(α′α∗) .

(6)

Thus, the coherent states are not orthogonal to each other. We see, however, that
they become approximately orthogonal in the limit of large separation of states,
that is when |α − α′| → ∞.
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4. By the means of eqs. (5) and (6), we get

|α〉 =
1
π

∫
d2α′|α′〉〈α′|α〉 =

1
π

∫
d2α′e−

1
2 |α−α

′ |2ei Im(α′α∗)|α′〉 . (7)

Hence, any coherent state can be expressed through other coherent states. This
proves the system of coherent states to be overcomplete.

5. Let us again make use of eq. (4) and write∫
d2α f (|α|)|α〉 =

∑
n

(∫
d2α f (|α|)e−

|α|2
2
αn

√
n!

)
|n〉 = 0 . (8)

Since the eigenstates {|n〉 , n = 0, 1, 2, ...} of the harmonic oscillator do form a basis
in the Hilbert space, from the above it follows that∫

d2α f (|α|)e−
|α|2

2 αn = 0 , for all n . (9)

In polar coordinates, the last integral is rewritten as∫
dφdr r f (r)e−

r2
2 rneinφ =

∫ ∞

0
dr r f (r)rne−

r2
2 ·

∫ 2π

0
dφ einφ

= δn02π
∫ ∞

0
dr r f (r)e−

r2
2 .

(10)

To ensure eq. (8), it is enough to choose f (r) =
e

r2
2

r
· g(r), where g(r) is such that∫ ∞

0
dr g(r) = 0 . (11)

For example,
g(r) = 2e−2r − e−r . (12)

2. The Saddle-point method

1. Let x0 be a single finite extremum point of the function f (x). Expanding around x0

up to the second order, we have

f (x) = f (x0) +
f ′′(x0)

2
(x − x0)2 + O((x − x0)3) . (13)

Here we assume that the second derivative f ′′(x) is not vanishing at x = x0. Substi-
tuting this into the integral

I =

∫ ∞

−∞

dx e
i
~ f (x)−ε |x| (14)
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and neglecting ε, we obtain 1

I ≈ e
i
~ f (x0)

∫ ∞

−∞

dy e
i
~

f ′′(x0)
2 y2

= e
i
~ f (x0)

√
2π~i

f ′′(x0)
. (15)

We conclude that the expansion of f (x) up to the second order in (x − x0) gives the
contribution to I of the order O(~1/2).

2. The formula (15) is exact if the function f (x) is quadratic in x, since in this case the
Taylor expansion terminates at the second derivative of f (x).

3. To simplify the notations, let us denote x − x0 by t, and the i’th coefficient in the
Taylor series of f (x) — by ai. The integral (14) becomes

I = e
i
~a0

∫ ∞

∞

dt e
i
~

∑∞
n=2 antn . (16)

Now we assume that the coefficients antn/~ for n > 2 are all much smaller than 1.
This allows us to expand the exponents e

i
~a3t3 , e

i
~a4t4 in the integrand of (16). We

have

I = e
i
~ a0

∫ ∞

−∞

dt e
i
~a2t2

(
1 +

i
~

a3t3 +
i
~

a4t4 −
1

2~2 a2
3t6 + ...

)
. (17)

To compute the next to the leading order (NLO) coefficient in I, it is enough to
expand up to t6 in the r.h.s. of eq. (17). The following formulas can be derived
using the definition of the Gamma function or by taking derivatives of a gaussain
integral with respect to the constant in the exponent.∫

dy y4e
i
~ay2

=
3
√
π

4
(
− ia
~

)5/2 , (18)

∫
dy y6e

i
~ay2

=
15
√
π

8
(
− ia
~

)7/2 , (19)

we arrive at

I = e
i
~a0

√
πi~
a2

1 +
i
(
12a2a4 − 15a2

3

)
~

16a3
2

+ O(~2)

 . (20)

Hence, the first correction to the leading-order (O(~1/2)) result (15) is given by the
O(~3/2)-term in eq. (20).
Let us make a comment regarding eq. (20). It suggests that I can be computed as
an expansion in powers of ~1/2. This expansion is valid as soon as ~1/2 is confined
within its radius of convergence. Within this radius, the series whose first two terms
we just computed must converge to I. Note, however, that in deriving eq. (20) we
assumed ~ to be large enough in order for the expansion of the exponent in eq. (16)
to make sense. This rises doubts about legitimacy of the formula (20) in the limit

1. We use the standard formula for the Gaussian integral, assuming that it remains valid when the
parameter in the exponent is continued from real to complex values. For the proof of legitimacy of such
continuation, see Appendix A.
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~ → 0. The truth is that the series in the r.h.s. of this formula is, in fact, asymp-
totic. This means that its radius of convergence is zero and, hence, if we continue
to compute higher-order terms in ~1/2, we will see that from some point such terms
start growing, making the full series divergent at any finite ~. Still, one can extract
meaningful information from the asymptotic series. As is proved in asymptotic ana-
lysis, the best approximation to the exact answer is provided by taking first several
terms of the series. Thus, after all, the result (20) is correct.

4. Here as f (x) we take the function which coincides with x2 − x4 at x > δ, and which
goes to zero and has no extrema at finite x in the interval x < δ. For example,

f (x) =


x2 − x4 , x > δ ,

δ4
(
1 − δ2

)3(
3δ3 − 2δ − 2δ2x + x

)2 , x < δ .
(21)

Then, the only finite extremum point of f (x) is x0 = 1/
√

2. We have,

a0 = f (x0) =
1
4
, a2 =

f ′′(x0)
2

= −2 ,

a3 =
f ′′′(x0)

6
= −2

√
2 , a4 =

f (IV)(x0)
24

= −1 .
(22)

Substituting this into eq. (20) gives

J = e
i

4~

√
−iπ~

2

(
1 +

3i~
4

)
. (23)

3. Classical Actions

1. For the free particle, the equation of motion is ẍ = 0, and the solution is x(t) =

At + B, with A, B some constants, which are fixed by the boundary conditions,
x(0) = xi, x(T ) = x f , so that x(t) =

x f−xi

T t + xi. Substituting x(t) to the action gives

S cl =

∫ T

0

mẋ2

2
dt =

m
2

(x f − xi)2

T
. (24)

2. The harmonic oscillator requires a bit more work. The general solution is x(t) =

A sinωt + B cosωt, where A and B are fixed by the boundary conditions x(0) = xi,
x(T ) = x f . We have

A =
x f − xi cosωT

sinωT
, B = xi . (25)

The action reads as follows,

S cl =
m
2

∫ T

0
(ẋ2 − ω2x2) dt , x = x(t) . (26)
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The first term can be integrated by parts,∫ T

0
ẋ2dt = xẋ|T0 −

∫ T

0
xẍ dt . (27)

For the harmonic oscillator, ẍ = −ω2x. Hence∫ T

0
ẋ2dt = xẋ|T0 + ω2

∫ T

0
x2dt , (28)

and

S cl =
m
2

(
xẋ|T0 + ω2

∫ T

0
x2dt − ω2

∫ T

0
x2dt

)
=

m
2

xẋ|T0 , (29)

or
S cl =

m
2

(
x f ẋ(T ) − xi ẋ(0)

)
. (30)

Taking derivatives of x(t), we obtain,

ẋ(0) = ω
x f − xi cosωT

sinωT
,

ẋ(T ) = ω
x f − xi cosωT

sinωT
cosωT − ωxi sinωT .

(31)

The result is
S cl =

mω
2 sinωT

(
(x2

i + x2
f ) cosωT − 2xix f

)
. (32)

If the trajectory x(t) represents a full period of oscillations, then xi = x f and T =

2π/ω. Plugging this into eq. (32), we have

S cl = mω
cosωT − 1

sinωT

∣∣∣∣∣
T= 2π

ω

= 0 . (33)

3. Let x1, x2 be two independent solutions of the homogeneous equation of motion,
for example,

x1 = sinωt , x2 = cosωt . (34)

Then, the general solution of the equation with the external force included,

ẍ + ω2x =
F(t)
m

, (35)

is of the form
x(t) = c1x1(t) + c2x2(t) + xp(t) , (36)

where xp(t) is the particular solution of eq. (35). The latter can be obtained by
several methods. For example, the method of variation of parameters yields the
following particular solution 2

xp(t) =
1

mω

(
x1(t)

∫ t

0
F(t′)x2(t′)dt′ − x2(t)

∫ t

0
F(t′)x1(t′)dt′

)
. (37)

2. See, e.g., Carl M. Bender, Steven A. Orszag, Advanced Mathematical Methods for Scientists and
Engineers I, Springer, 1999, p.15.
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Solving the boundary values problem, we have in eq. (36),

c1 =
1

sinωT
(x f − xi cosωT − xp(T )) , c2 = xi , (38)

where we used the fact that F(0) = F(T ) = 0.
Next, we compute the action

S =
m
2

∫ T

0
(ẋ2 − ω2x2) dt +

∫ T

0
xF(t) dt . (39)

Substituting eq. (36), we have

S cl = S cl,F=0 + S 1 + S 2 + S 3 , (40)

where

S 1 =

∫ T

0
(c1x1(t) + c2x2(t))F(t) dt ,

S 2 =

∫ T

0
xp(t)F(t) dt ,

S 3 =
m
2

∫ T

0
(ẋp(t)2 − ω2xp(t)2) dt .

(41)

The term S cl,F=0 is the action of the undamped oscillator given in eq. (32). The next
term is written explicitly with the help of eqs. (34) and (38). S 2 is written by using

eqs. (34), (37) and (38). Finally, S 3 is, in fact, equal to −
1
2

S 2. Indeed,

m
2

∫ T

0
(ẋp(t)2 − ω2xp(t)2) dt = −

m
2

∫ T

0
xp(t)(ẍp(t) + ω2xp(t)) dt

= −
1
2

∫ T

0
xp(t)F(t) dt = −

1
2

S 2 .

(42)

Overall,

S cl =
mω

2 sinωT

[
(x2

i + x2
f ) cosωT − 2xix f +

2x f

mω

∫ T

0
F(t) sinωt dt

+
2xi

mω

∫ T

0
F(t) sinω(T − t)dt −

2
m2ω2

∫ T

0

∫ t

0
F(t)F(t′) sinω(T − t) sinωt′dt′dt

]
.

(43)

4∗∗. More about completeness of Coherent states

This problem is advanced and outside the main scope of the course. If you have ideas how
to solve it, you can share them on the seminar.

6


