
QUANTUM PHYSICS III
Solutions to Problem Set 1 23 September 2018

1. Gaussian Integrals

To compute the first integral, one can use the following trick. First, multiply I1 by itself,

I2
1 =

∫ ∞

−∞

∫ ∞

−∞

dxdy e−
x2+y2

2 , (1)

and then compute the obtained expression using the polar coordinates,

I2
1 = 2π

∫ ∞

0
dr re−

r2
2 = 2π . (2)

Hence,
I1 =

√
2π . (3)

To compute I2 and I3, we first note that∫ ∞

−∞

dx e−
ax2

2 =

√
2π
a
, (4)

and ∫ ∞

−∞

dx e−
1
2 (x−x0)2

=

∫ ∞

−∞

dx′ e−
1
2 x′2 = I1 . (5)

So, we have

I2 =

∫ ∞

−∞

dx e−
1
2 ax2+bx =

∫ ∞

−∞

dx e−
a
2 (x− b

a )2
+ b2

2a =

√
2π
a

e
b2
2a , (6)

I3 =

∫ ∞

−∞

x2e−
ax2

2 = −2
d

da

∫ ∞

−∞

e−
ax2

2 = −2
d

da

√
2π
a

=
1
a

√
2π
a
. (7)

2. A Gaussian packet

1. Since the wave function Ψ(p, 0) =
A

(2π)1/4 e−
σ2

~2
(p−p0)2

must be normalized to one, it

follows that ∫ ∞

−∞

|Ψ(p, 0)|2dp = 1 ⇒ A =

√
2σ
~
. (8)
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2. Recall that by definition the Fourier image is (note our convention about 2π multi-
pliers)

Ψ(x, 0) =
1

(2π)1/2

∫ ∞

−∞

dp Ψ(p, 0)e
i
~ px . (9)

Substituting the expression for Ψ(p, 0), we obtain,

Ψ(x, 0) =

√
2σ/~

(2π)3/4

∫ ∞

−∞

dp e
−
σ2 p2

~2
+

(
2σ2 p0
~ +ix

)
p
~ e−

σ2 p2
0

~2 =

(
~2

2πσ2

)1/4

e
i
~ p0 xe−

x2

4σ2 . (10)

Thus, Ψ(x, 0) is again a Gaussian function.
The dispersion of the operator A is defined as

(∆A)2 = 〈A2〉 − 〈A〉2 . (11)

Let us first compute ∆p(0). We have

〈p(0)〉 =

∫ ∞

−∞

dp p|Ψ(p, 0)|2 =

∫ ∞

−∞

dp (p + p0)|Ψ(p + p0, 0)|2 = p0 , (12)

because the expression p |Ψ(p + p0, 0)|2 is an odd function of p. Hence,

(∆p(0))2 =

∫ ∞

−∞

dp p2|Ψ(p, 0)|2− p2
0 =

∫ ∞

−∞

dp p2|Ψ(p+ p0, 0)|2 + p2
0− p2

0 = ~2/4σ2 ,

(13)
and

∆p(0) = ~/2σ . (14)

Similarly, using the expression (10) for Ψ(x, 0), one obtains

∆x(0) = σ . (15)

Of course, the above expressions for the dispersions can be seen immediately from
the expressions for Ψ(p, 0) and Ψ(x, 0), since the latter are Gaussian functions. Note
that ∆x(0)∆p(0) = ~/2, that is, the state |Ψ〉 minimizes the uncertainty relation for
the pair of operators x(0), p(0).

3. Solving the Cauchy problem gives

Ψ(p, t) = Ψ(p, 0)e−
i
~ω(p)t , ω(p) =

p2

2m
. (16)

To find Ψ(x, t), we make the Fourier transform of Ψ(p, t) and use the results of
exercise 1. We have

Ψ(x, t) =

√
2σ

(2π)3/4

∫ ∞

−∞

dp e
− 1

2 (2σ2+ i~t
2m ) p2

~2
+

(
σ2 p0
~ +ix

)
p
~ e−

σ2 p2
0

~2

=

√
2σ

(2π)3/4

√
2π

2σ2 + i~t
m

exp


(
ix + σ2

~
p0

)2

4σ2 + 2i~t
m

 e−
σ2

~2
p2

0

=

√
2σ

(2π)1/4

√√
2σ2 − i~t

m

σ2 + ~2t2
m2

exp

−
(
x − p0t

m

)2

4σ2 + 2i~t
m

 e
i
~ xp0e−

itp2
0

2m~

=

(
8σ2

π

)1/4 exp
[
−i

(
1
2 arctan ~t

2mσ2 +
p2

0
2m~ t

)]
(
16σ4 + 4~2t2

m2

)1/4 e
i
~ p0 xe

−
(x−

p0
m t)2

4σ2+ 2i~t
m ,

(17)
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where at the last step we used the fact that
√

c = |c|1/2e
i
2 arg c for a complex c.

From eqs. (16) and (17) it follows that

∆p(t) = ∆p(0) , ∆x(t) = ∆x(0)

√
1 +

~2t2

4m2σ4 . (18)

When t increases, ∆x(t) grows as well, and the equality ∆x∆p = ~/2 is not valid
anymore : the wave packet is spreading. From eq. (17) we note also that p0/m is
nothing but the group velocity of the wave packet.

3. Quantum fluctuations

We assume that the system comprising the hill and the object on the top of it does not
interact with anything. This allows us to drop out the potential term in the Schrödinger
equation. The wave function of the object can now be taken Gaussian, like in the previous
exercise. On physical grounds we expect that the probability density for the object to fall
from the top of the hill is saturated at the time when its dispersion ∆x(t) becomes equal to
the size of the top l. The dispersion is given by (see eq. (18))

(∆x(t))2 = σ2 +
~2t2

4m2σ2 . (19)

1. Denote the fall time by t0. Consider the equality ∆x(t0) = l as an equation for
t0 = t0(σ) : (

~t0

2m

)2

= −σ4 + l2σ2. (20)

Maximizing t0 with respect to σ gives

σ =
l
√

2
, t0 max =

ml2

~
∼

1g · 1cm2

10−33 g·cm2

s

= 1033s . (21)

2. Substituting σ = 10−9cm � l into eq. (20) gives

t0 ≈
mlσ
~

= 1018s . (22)

4. Harmonic oscillator

1. Recall that H = ~ω(a†a + 1/2) and [a, a†] = 1. We have

[a,H] = ~ω[a, a†a + 1/2] = ~ω[a, a†a] = ~ω
(
aa†a − a†aa

)
= ~ω[a, a†]a = ~ωa .

(23)

Similarly, [a†,H] = −~ωa†.
In the Heisenberg picture,

i~
da
dt

= [a,H] = ~ωa ⇒ a(t) = a(0)e−iωt . (24)
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Therefore,

[a(t), a†(t)] = [a(0)e−iωt, a†(0)eiωt] = [a(0), a†(0)] = 1 . (25)

2. One should express x(t) and p(t) through α(t) and α∗(t),

x(t) =

√
~

2mω
(α(t) + α∗(t)) ,

p(t) = −i

√
~mω

2
(α(t) − α∗(t)) ,

(26)

and put them into H,

H =
1

2m
p(x)2 +

1
2

mω2x(t)2 =
1

2m
p(0)2 +

1
2

mω2x(0)2

= ~ω
1
4

4α(0)α∗(0) = ~ω|α(0)|2 ,
(27)

where we made use of the conservation of H with time.

5. Gaussian integrals in more dimensions

1. The idea is to diagonalize the matrix A in order to reduce the integral into the pro-
duct of integrals of Gaussian functions. Let O be the desired orthogonal transfor-
mation,

O−1AO = diag(λ1, ..., λN) , (28)

where λi are eigenvalues of A. The corresponding change of variables reads as fol-
lows,

y = Otx ⇒ dy1...dyN = det O · dx1...dxN = dx1...dxN , (29)

since O is orthogonal. Applying the transformation (29) to the integral gives∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN exp
(
−

1
2

xtAx + Btx
)

=

∫ ∞

−∞

...

∫ ∞

−∞

dy1...dyN exp
(
−

1
2

yt
(
O−1AO

)
y + BtOy

)
=

∫ ∞

−∞

...

∫ ∞

−∞

dy1...dyN exp

−1
2

N∑
i=1

λiy2
i + BtOy


=

√
(2π)N

ΠN
i=1λi

exp

1
2

N∑
i=1

B jO jiλ
−1
i (O−1)ikBk

 =

√
(2π)N

det A
exp

(
1
2

BtA−1B
)
.

(30)

2. Here one can use the following trick. First, given the exponent exp
(
−1

2 xtAx
)
, we

supplement it with the “source” exp(Btx) of the variable x. Then we differentiate
the source with respect to Bi to obtain the factor xi in the integrand. Finally, at
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the end of calculation we take the limit B = 0. Here is the implementation of this
program : ∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN xi1 xi2 exp
(
−

1
2

xtAx
)

=

∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN xi1 xi2 exp
(
−

1
2

xtAx + Btx
)∣∣∣∣∣∣

B=0

=
d

dBi1

d
dBi2

∫ ∞

−∞

...

∫ ∞

−∞

dx1...dxN exp
(
−

1
2

xtAx + Btx
)∣∣∣∣∣∣

B=0

=

√
(2π)N

det A
d

dBi1

d
dBi2

exp
(
1
2

Bi

(
A−1

)
i j

B j

)∣∣∣∣∣∣
B=0

=

√
(2π)N

det A

(
A−1

)
i1i2

.

(31)

Thus,
〈xi1 xi2〉 =

(
A−1

)
i1i2

. (32)

As for the average 〈xi1 xi2 xi3 xi4〉, it is obtained by simply adding more differentials
d/dBip with various ip, and the result

〈xi1 xi2 xi3 xi4〉 = 〈xi1 xi2〉〈xi3 xi4〉 + 〈xi1 xi3〉〈xi2 xi4〉 + 〈xi1 xi4〉〈xi2 xi3〉 (33)

is reproduced straightforwardly. Note finally that any odd number of derivatives
inevitably gives some Bip appearing before the exponent, hence, after setting B = 0,
all such terms vanish, and

〈xi1 xi2 ...xik〉 = 0 , if k is odd . (34)
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