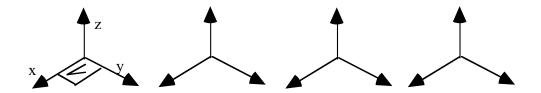
Rotations 3D et Quaternions



Mohamed Bouri Hannes Bleuler

Ecole Polytechnique Fédérale de Lausanne Laboratoire de Systèmes Robotiques.

Objectifs

de la séance de cours

- Rotations
 - Matrices des cosinus directeurs
 - Formule de Rodrigues
 - Passage de la matrice de rotation à l'axes et l'angle de rotation
 - Quaternions
- Transformation homogène

2.1.5 - Rotations en 3D:

Axe de rotation

• 2D:

Angle

• Centre de rotation

3D:

Angle

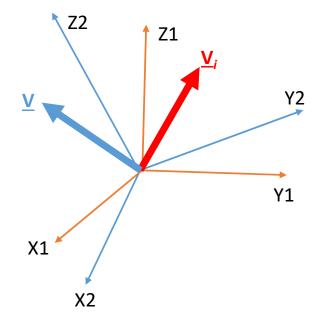
Axe de Rotation

En 3 dimensions, nous avons besoin de spécifier l'angle et l'axe de rotation

Introduction générale

Comment trouver la matrice de rotation généralisée?

généralisée



Considération de la transformation active des vecteurs de base.

Soit un vecteur <u>V</u> exprimé dans le repère de base {1} comme suit :

$$\underline{\mathbf{V}} = V_{x1}.\underline{\mathbf{x}}_1 + V_{y1}.\underline{\mathbf{y}}_1 + V_{z1}.\underline{\mathbf{z}}_1$$

$$\underline{\mathbf{V}} = V_{x2}.\underline{\mathbf{x}}_2 + V_{y2}.\underline{\mathbf{y}}_2 + V_{z2}.\underline{\mathbf{z}}_2$$

Nous pouvons écrire :

$$\underline{\mathbf{V}} = V_{x1}.\underline{\mathbf{x}}_1 + V_{y1}.\underline{\mathbf{y}}_1 + V_{z1}.\underline{\mathbf{z}}_1 = V_{x2}.\underline{\mathbf{x}}_2 + V_{y2}.\underline{\mathbf{y}}_2 + V_{z2}.\underline{\mathbf{z}}_2$$

$$V_{x1}.\underline{x}_1 + V_{y1}.\underline{y}_1 + V_{z1}.\underline{z}_1 = V_{x2}.\underline{x}_2 + V_{y2}.\underline{y}_2 + V_{z2}.\underline{z}_2$$

$$V_{x1}.\underline{x}_1.\underline{x}_1 + V_{y1}.\underline{y}_1\underline{x}_1 + V_{z1}.\underline{x}_1 = V_{x2}.\underline{x}_2.\underline{x}_1 + V_{y2}.\underline{y}_2.\underline{x}_1 + V_{z2}.\underline{z}_2.\underline{x}_1$$

$$V_{x1} = V_{x2} \cdot \underline{x}_2 \cdot \underline{x}_1 + V_{y2} \cdot \underline{y}_2 \cdot \underline{x}_1 + V_{z2} \cdot \underline{z}_2 \cdot \underline{x}_1$$

$$V_{x1}.\underline{x}_{1}.\underline{y}_{1} + V_{y1}.\underline{y}_{1}.\underline{y}_{1} + V_{z1}.\underline{z}_{1}.\underline{y}_{1} = V_{x2}.\underline{x}_{2}.\underline{y}_{1} + V_{y2}.\underline{y}_{2}.\underline{y}_{1} + V_{z2}.\underline{z}_{2}.\underline{y}_{1}$$

$$V_{x1}.\underline{x}_1\underline{v}_1 + V_{y1}.\underline{v}_1.\underline{v}_1 + V_{z1}.\underline{z}_1\underline{v}_1 = V_{x2}.\underline{x}_2.\underline{v}_1 + V_{y2}.\underline{v}_2.\underline{v}_1 + V_{z2}.\underline{z}_2.\underline{v}_1$$

$$V_{y1} = V_{x2} \cdot \underline{x}_2 \cdot \underline{y}_1 + V_{y2} \cdot \underline{y}_2 \cdot \underline{y}_1 + V_{z2} \cdot \underline{z}_2 \cdot \underline{y}_1$$

$$V_{z1} = V_{x2} \cdot \underline{x}_2 \cdot \underline{z}_1 V_{y2} \cdot \underline{y}_2 \cdot \underline{z}_1 + V_{z2} \cdot \underline{z}_2 \cdot \underline{z}_1$$

Matrice des Cosinus directeurs

$$V_{x1} = V_{x2} \cdot \underline{x}_{2} \cdot \underline{x}_{1} + V_{y2} \cdot \underline{y}_{2} \cdot \underline{x}_{1} + V_{z2} \cdot \underline{z}_{2} \cdot \underline{x}_{1}$$

$$V_{y1} = V_{x2} \cdot \underline{x}_{2} \cdot \underline{y}_{1} + V_{y2} \cdot \underline{y}_{2} \cdot \underline{y}_{1} + V_{z2} \cdot \underline{z}_{2} \cdot \underline{y}_{1}$$

$$V_{z1} = V_{x2} \cdot \underline{x}_{2} \cdot \underline{z}_{1} + V_{y2} \cdot \underline{y}_{2} \cdot \underline{z}_{1} + V_{z2} \cdot \underline{z}_{2} \cdot \underline{z}_{1}$$

$$\begin{bmatrix} V_{x1} \\ V_{y1} \\ V_{z1} \end{bmatrix} = \begin{bmatrix} \underline{x}^{2} \cdot \underline{x}^{1} & \underline{y}^{2} \cdot \underline{x}^{1} & \underline{z}^{2} \cdot \underline{x}^{1} \\ \underline{x}^{2} \cdot \underline{y}^{1} & \underline{y}^{2} \cdot \underline{y}^{1} & \underline{z}^{2} \cdot \underline{y}^{1} \\ \underline{x}^{2} \cdot \underline{z}^{1} & \underline{y}^{2} \cdot \underline{z}^{1} & \underline{z}^{2} \cdot \underline{z}^{1} \end{bmatrix} \begin{bmatrix} V_{x2} \\ V_{y2} \\ V_{z2} \end{bmatrix}$$

$$\boldsymbol{R} = \begin{bmatrix} \underline{x}^{2} \cdot \underline{x}^{1} & \underline{y}^{2} \cdot \underline{x}^{1} & \underline{z}^{2} \cdot \underline{x}^{1} \\ \underline{x}^{2} \cdot \underline{y}^{1} & \underline{y}^{2} \cdot \underline{y}^{1} & \underline{z}^{2} \cdot \underline{y}^{1} \\ \underline{x}^{2} \cdot \underline{z}^{1} & \underline{y}^{2} \cdot \underline{z}^{1} & \underline{z}^{2} \cdot \underline{z}^{1} \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} \underline{x2.} & \underline{x1} & \underline{y2.} & \underline{x1} & \underline{z2.} & \underline{x1} \\ \underline{x2.} & \underline{y1} & \underline{y2.} & \underline{y1} & \underline{z2.} & \underline{y1} \\ \underline{x2.} & \underline{z1} & \underline{y2.} & \underline{z1} & \underline{z2.} & \underline{z1} \end{bmatrix}$$

Matrice des Cosinus directeurs Transformation passive

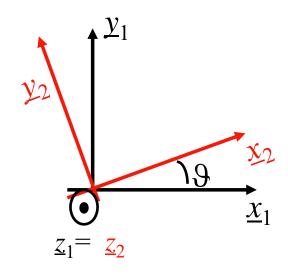
$$\begin{bmatrix} V_{x2} \\ V_{y2} \\ V_{z2} \end{bmatrix} = \begin{bmatrix} \underline{x}_1 \underline{x}_2 & \underline{x}_1 \underline{y}_2 & \underline{x}_1 \underline{z}_2 \\ \underline{y}_1 \underline{x}_2 & \underline{y}_1 \underline{y}_2 & \underline{y}_1 \underline{z}_2 \\ \underline{z}_1 \underline{x}_2 & \underline{z}_1 \underline{y}_2 & \underline{z}_1 \underline{z}_2 \end{bmatrix} \begin{bmatrix} V_{x1} \\ V_{y1} \\ V_{z1} \end{bmatrix}$$

$$R_p = \begin{bmatrix} \underline{x}_1 \underline{x}_2 & \underline{x}_1 \underline{y}_2 & \underline{x}_1 \underline{z}_2 \\ \underline{y}_1 \underline{x}_2 & \underline{y}_1 \underline{y}_2 & \underline{y}_1 \underline{z}_2 \\ \underline{z}_1 \underline{x}_2 & \underline{z}_1 \underline{y}_2 & \underline{z}_1 \underline{z}_2 \end{bmatrix}$$

$$R_{p} = \begin{bmatrix} \underline{x}_{1}\underline{x}_{2} & \underline{x}_{1}\underline{y}_{2} & \underline{x}_{1}\underline{z}_{2} \\ \underline{y}_{1}\underline{x}_{2} & \underline{y}_{1}\underline{y}_{2} & \underline{y}_{1}\underline{z}_{2} \\ \underline{z}_{1}\underline{x}_{2} & \underline{z}_{1}\underline{y}_{2} & \underline{z}_{1}\underline{z}_{2} \end{bmatrix}$$

Calcul de la matrice de rotation

autour de l'axe Z



Rappel

$$\vec{u} \cdot \vec{v} = |\vec{u}||\vec{v}|.\cos(\vec{u}, \vec{v})$$

$$\boldsymbol{R}_{z} = \begin{bmatrix} \underline{x}2 \cdot \underline{x}1 & \underline{y}2 \cdot \underline{x}1 & \underline{z}2 \cdot \underline{x}1 \\ \underline{x}2 \cdot \underline{y}1 & \underline{y}2 \cdot \underline{y}1 & \underline{z}2 \cdot \underline{y}1 \\ \underline{x}2 \cdot \underline{z}1 & \underline{y}2 \cdot \underline{z}1 & \underline{z}2 \cdot \underline{z}1 \end{bmatrix}$$

$$= \begin{bmatrix} \cos(\theta) & -\sin(\theta) & 0 \\ \sin(\theta) & \cos(\theta) & 0 \end{bmatrix}$$

Rotations around x,y,z

Exercice 3.1

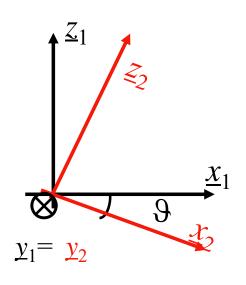
$$\mathbf{R}_{x} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & \sin \varphi & \cos \varphi \end{bmatrix}$$

$$\mathbf{R}_{z} = \begin{bmatrix} \cos \varphi & -\sin \varphi & 0 \\ \sin \varphi & \cos \varphi & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

A démontrer

Matrice des cosinus directeurs

Exercice 3.1



$$\mathbf{R} = \begin{bmatrix} \underline{x2.} & \underline{x1} & \underline{y2.} & \underline{x1} & \underline{z2.} & \underline{x1} \\ \underline{x2.} & \underline{y1} & \underline{y2.} & \underline{y1} & \underline{z2.} & \underline{y1} \\ \underline{x2.} & \underline{z1} & \underline{y2.} & \underline{z1} & \underline{z2.} & \underline{z1} \end{bmatrix}$$

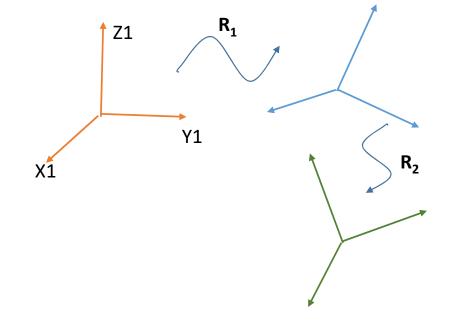
$$\mathbf{R}_{y} = [?]$$

Rotations

successives

Règle:

La <u>matrice de rotation combinée</u> de plusieurs rotations est le produit des matrices de rotation correspondantes en commençant toujours par celle associée à la dernière rotation.



$$R = R_n . R_{n-1} . R_{n-2} R_1$$

La rotation d'ordre n correspond à la dernière opération effectuée.

La matrice de rotation R1 est associée à la première rotation effectuée.

Exercice 3.2

Deduce the rotation matrix obtained in the following cases:

- a) rotation by 90° around z, then rotation by 90° around y
- b) rotation by 90° around y, then rotation by 90° around z

Exercice 3.3

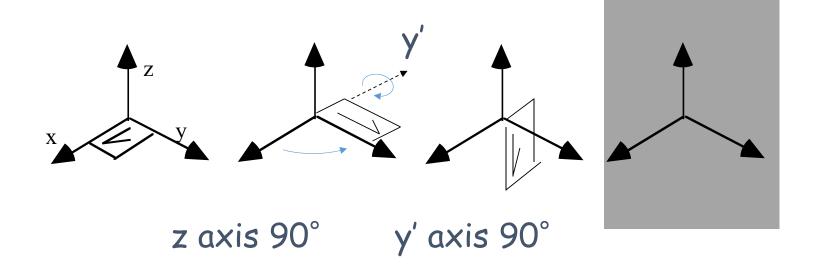
Solution par dessins isometriques:

Rappel:

- Une rotation horaire possède une amplitude négative
- Une rotation anti-horaire possède une amplitude positive

Rotation autour d'axes liés au corps

Cas a

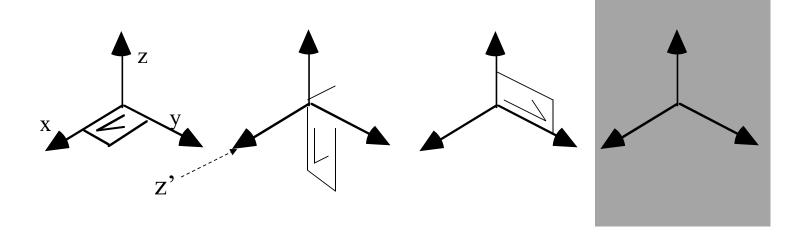


« Body frame »

Rotation autour d'axes liés au corps

Cas b

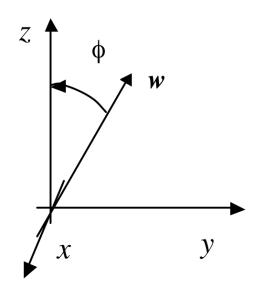
Body frame



y axis 90° z' axis 90°

Exercice 3.4

Rotation d'un angle g autour de l'axe w



$$R = R_{\chi}(-\phi) . R_{\chi}(\theta) . R_{\chi}(\phi)$$

Passage Axe/Angle => Matrice de cos. dir.

Rotation d'un angle \mathcal{G} autour d'un axe $[x, y, z]^T$ avec $||[x, y, z]^T|| = 1$

$$\mathbf{R} = (1 - \cos \theta) \begin{bmatrix} xx & xy & xz \\ xy & yy & yz \\ xz & yz & zz \end{bmatrix} + \cos \theta \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} + \sin \theta \begin{bmatrix} 0 & -z & y \\ z & 0 & -x \\ -y & x & 0 \end{bmatrix}$$



Benjamin Olinde Rodrigues 1795 – 1851

(10)

Passage Matrice de cos. dir. => Axe/Angle

$$\mathbf{R} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix}$$

$$\mathbf{R} = \begin{bmatrix} a & d & g \\ b & e & h \\ c & f & i \end{bmatrix} \quad \text{axis} \quad \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2\sin(\theta)} \begin{bmatrix} f - h \\ g - c \\ b - d \end{bmatrix}$$

$$\cos(\mathcal{G}) = \frac{1}{2}(tr(\mathbf{R}) - 1)$$

$$\sin(\theta) = \pm \frac{1}{2} \sqrt{(f-h)^2 + (g-c)^2 + (b-d)^2}$$
 (11)

Exercice

Application de (11) à l'ex. 3.2

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \frac{1}{2\sin(\vartheta)} \begin{bmatrix} f - h \\ g - c \\ b - d \end{bmatrix}$$

Utilisation de la relation (11)

Limitations

L'expression axe/angle de l'équation (11) présente deux défauts majeurs pour le traitement à l'ordinateur:

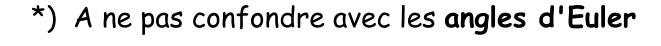
- 1.) La solution n'est pas unique (racine pos. ou neg.)
- 2.) sin(9)=0 mène à une singularité (axe non-défini)

En pratique, il y aura une mauvaise condition numérique pour tout angle proche de 0 ou de 180° et un blocage des algorithme pour ces deux cas! « Blocage de Cardan »

Solution: Quaternions!

Ces deux inconvénients disparaissent de façon élégante en employant les paramètres d'Euler*) ou paramètres de Rodrigues.

Les quaternions sont employés en robotique industrielle.



Les quaternions sont une généralisation des nombres complexes.

Après de longs et infructueux essais d'étendre l'interprétation géométrique des nb. Complexes dans le plan (Argand, 1768-1822, mathématicien genevois) aux 3 dimensions, Hamilton (1843) a trouvé les deux astuces nécessaires:

- 1. Il n'y aura pas deux, mais trois parties imaginaires, en plus de la partie réelle.
- 2. Il faut abandonner la commutativité de la multiplication.

Partie réelle, parties imaginaires

Ces nouveaux nombres "hypercomplexes", contiennent

- une partie réelle scalaire λ_0
- trois parties imaginaires $[\lambda_1, \lambda_2, \lambda_3]^T$ qui sontinterprétées comme partie vectorielle $\underline{\lambda}$.

le quaternion Q est donc le quadruple

$$Q = \{ \lambda_0, \lambda_1, \lambda_2, \lambda_3 \} = \{ \lambda_0, \underline{\lambda} \}$$
 (11a)

Parties imaginaires:

Généralisation de i = V(-1)

$$Q = \{ \lambda_0, \lambda_1, \lambda_2, \lambda_3 \} = \lambda_0 + i \lambda_1 + j \lambda_2 + k \lambda_3$$
(11d)

$$i^2 = j^2 = k^2 = ijk = -1$$
 (11e)

$$ij = k = -ji$$

$$jk = i = -kj$$

$$ki = j = -ik$$

Non-Commutativité!

Comment la rotation est-elle exprimée dans le quaternion?

• L'axe de rotation est donnée par la partie vectorielle $\underline{\lambda}$

$$\underline{\lambda} = [\lambda_1, \lambda_2, \lambda_3]^T$$

$$Q = \{ \lambda_0, \lambda_1, \lambda_2, \lambda_3 \} = \{ \lambda_0, \underline{\lambda} \}$$

Angle de rotation ϑ :

$$\lambda_0 = \cos(9/2)$$

(11b)

L'axe de rotation disparaît pour les angles de rotation 0° , 360° , 720° ...

L'angle de rotation J est introduit de la façon suivante dans le quaternion Q:

$$\lambda_0 = \cos(9/2)$$
 et $\underline{\lambda} = \sin(9/2) [x, y, z]^T$, $//x, y, z//=1$ (11b')

Angle et quaternions:

$$\lambda_0 = \cos(9/2)$$

 $|\underline{\lambda}| = \sin(\theta/2)$

(11b)

Donc, tous les quaternions de rotation sont unitaires:

$$\lambda_0^2 + \lambda_1^2 + \lambda_2^2 + \lambda_3^2 = 1$$

(11c)

Aussi connus comme les paramètres d'Euler ou paramètres de Rodrigues

Rotations combinées

Rappel des règles:
$$\begin{cases} i^2 = j^2 = k^2 = -1 \\ ij = k = -ji \\ jk = i = -kj \\ ki = j = -ik \end{cases}$$

mènent au produit

$$\begin{aligned} Q_{M}Q_{L} &= \{ \ \mu_{0} \ , \ \underline{\mu} \} \ \{ \ \lambda_{0} \ , \ \underline{\lambda} \ \} = \\ \{ \ \mu_{0}\lambda_{0} - \underline{\mu}^{T}\underline{\lambda} \ , \ \mu_{0}\underline{\lambda} \ + \lambda_{0}\,\underline{\mu} \ + \ \underline{\mu} \times \underline{\lambda} \ \} \end{aligned} \tag{119}$$

Ce produit définit l'enchaînement des rotations Q_I puis Q_M

Exercice 3.5: Exercice 3.4 avec des quaternions.

Passage entre quaternions et matrice des cosinus directeurs

$$R = \begin{bmatrix} 2(\lambda_0^2 + \lambda_1^2) - 1 & 2(\lambda_1 \lambda_2 - \lambda_0 \lambda_3) & 2(\lambda_1 \lambda_3 + \lambda_0 \lambda_2) \\ 2(\lambda_1 \lambda_2 + \lambda_0 \lambda_3) & 2(\lambda_0^2 + \lambda_2^2) - 1 & 2(\lambda_2 \lambda_3 - \lambda_0 \lambda_1) \\ 2(\lambda_1 \lambda_3 - \lambda_0 \lambda_2) & 2(\lambda_2 \lambda_3 + \lambda_0 \lambda_1) & 2(\lambda_0^2 + \lambda_3^2) - 1 \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix}$$

$$\begin{bmatrix} r_{11} & r_{12} & r_{13} \\ r_{21} & r_{22} & r_{23} \\ r_{31} & r_{32} & r_{33} \end{bmatrix} \qquad \underline{\lambda} = \frac{1}{2} \begin{bmatrix} \operatorname{sgn}(r_{32} - r_{23})\sqrt{r_{11} - r_{22} - r_{33} + 1} \\ \operatorname{sgn}(r_{13} - r_{31})\sqrt{r_{22} - r_{11} - r_{33} + 1} \\ \operatorname{sgn}(r_{21} - r_{12})\sqrt{r_{33} - r_{22} - r_{11} + 1} \end{bmatrix}$$

$$\lambda_0 = \frac{1}{2} \sqrt{r_{11} + r_{22} + r_{33} + 1} = \cos(9/2) \ge 0$$

Effort de calcul

Composition de rotations

	Mul.	Add. & soustr.	total
Matrices de rot.	27	18	45
Quaternions	16	12	28

Pour la rotation de vecteurs, il faut utiliser les matrices

Matrices homogènes 3D

$$\begin{bmatrix} \mathbf{R}_{3\times3} & \mathbf{t}_{3\times1} \\ \mathbf{0}_{1\times3} & \mathbf{1} \end{bmatrix}$$
 (12)

Une rotation autour d'un axe ne passant pas par l'origine se compose de la même façon que dans le cas 2D:

$$\begin{bmatrix} \mathbf{I}_{3\times3} & \mathbf{p}_{3\times1} \end{bmatrix} \begin{bmatrix} \mathbf{R} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{I} & -\mathbf{p} \end{bmatrix} = \begin{bmatrix} \mathbf{R} & \mathbf{p} - \mathbf{R}\mathbf{p} \end{bmatrix}$$

$$\begin{bmatrix} \mathbf{0}_{1\times3} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{0} & 1 \end{bmatrix} \begin{bmatrix} \mathbf{0} & 1 \end{bmatrix} = \begin{bmatrix} \mathbf{0} & 1 \end{bmatrix}$$
(13)

avec le vecteur p de l'origine O à un point quelconque sur l'axe de rotation

Rappel: Mouvement général 3D: Vis (screw, Schraube)

Recall from earlier lecture: The most general motion in 3D is a screw

Différence avec le cas 2D:

Le mouvement général en 3D est équivalent à une rotation autour d'un axe plus une translation en direction de cet axe.

Torseur cinématique

Torseur statique

Torseur: Paire de vecteurs, un polaire et un axial

Polar and Axial Vectors

(why not discussed in geometry & lin. algebr.?)

Polar vectors are **independent of the coordinate system** Examples:

Force, velocity, acceleration, momentum ($\underline{p} = m\underline{v}$), Electric field, poynting vector

Axial vectors **depend on the handedness** of the coordinates Examples:

Moment, rotational speed $\underline{\omega}$, moment of momentum ($\underline{L} = I\underline{\omega}$), magnetic flux density, spin ...

