
QUANTUM PHYSICS III
Solutions to Problem Set 4 12 October 2018

1. Free particle amplitude

Recall that

K = 〈X|U(T, 0)|0〉 =

(
2πi~T

m

)−1/2

exp
(
imX2

2~T

)
. (1)

1. Straightforward calculation yields

∂2K
∂X2 =

√
m

2πi~T
exp

(
imX2

2~T

) (
im
~T
−

m2X)2

~2T 2

)
,

∂K
∂T

=

√
m

2πi~T
exp

(
imX2

2~T

) (
−

imX2

2~T 2 −
1

2T

)
,

(2)

and we observe that

−
~

i
∂K
∂t f

= −
~2

2m
∂2K
∂x2

f

. (3)

2. To study the properties of the amplitude, it is convenient to select the real part of
the exponent in (1),

Re(
√

iK) =

√
m

2π~T
cos

(
mX2

2~T

)
. (4)

Let T = const, λ is the period of oscillations of Re(
√

iK) as a function of X. Then,
for X � λ

2π =
m(X + λ)2

2~T
−

mX2

2~T
≈

mXλ
~T

, (5)

and
λ ≈

2π~
m(X/T )

. (6)

In this formula, X/T = V is the classical velocity of the particle, and mX/T is its
classical momentum. Hence,

λ ≈
2π~

p
(7)

is the de Broglie wave length of the particle.

3. Let X = const and τ is the period of oscillations of Re(
√

iK) as a function of T . For
large T , neglecting the change of the amplitude of oscillations, we have

2π =
mX2

2~T
−

mX2

2~(T + τ)
=

mX2

2~T 2

(
τ

1 + τ/T

)
. (8)

Hence
τ ≈

4π~
mV2 . (9)

1



The frequency of oscillations is ω = 2π/τ ≈ mV2/2~. On the other hand, E =

mV2/2 is the classical kinetic energy of the particle. We obtain the well-known
relation

E = ~ω . (10)

-6 -4 -2 2 4 6

-1.0

-0.5

0.5

1.0

2 4 6 8 10

-0.8

-0.6

-0.4

-0.2

0.2

0.4

0.6

Figure 1 – The real part of the amplitude
√

iK as a function of X (the left panel), or T (the
right panel).

2. Free particle amplitude in momentum representation

The coordinate and the momentum representations are related via Fourier transform,

ψ̃(p, t) =
1
√

2π~

∫
dx ψ(x, t)e

i
~ px . (11)

1. Applying the Fourier transform to the both sides of the equation

ψ(x, t f ) =

∫
dx′ K(x, t f , x′, ti) ψ(x′, ti) , (12)

we have

ψ̃(p, t f ) =
1
√

2π~

∫
dx

∫
dx′ e

i
~ pxK(x, t f , x′, ti) ψ(x′, ti) . (13)

Applying the inverse Fourier transform to ψ(x′, ti) gives

ψ̃(p, t f ) =
1

2π~

∫
dp′

∫
dx

∫
dx′ e

i
~ pxK(x, t f , x′, ti) e−

i
~ p′x′ψ(p′, ti) . (14)

Comparing this with

ψ̃(p, t f ) =

∫
dp′ K̃(p, t f , p′, ti) ψ̃(p′, ti) , (15)

we conclude that

K̃(p, t f , p′, ti) =
1

2π~

∫
dx

∫
dx′ e

i
~ pxK(x, t f , x′, ti) e−

i
~ p′x′ . (16)
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To obtain the inverse relation, we multiply eq. (16) by e
i
~ p′x′′ and e−

i
~ px′′′ , and inte-

grate over p and p′. This gives∫
dp

∫
dp′ e−

i
~ px′′′ K̃(p, t f , p′, ti)e

i
~ p′x′′ = 2π~

∫
dx

∫
dx′ δ(x′ − x′′)δ(x − x′′′)K(x, t f , x′, ti)

= 2π~ K(x′′′, t f , x′′, ti) .
(17)

Hence,

K(x, t f , x′, ti) =
1

2π~

∫
dp

∫
dp′ e−

i
~ pxK̃(p, t f , p′, ti)e

i
~ p′x′ . (18)

2. Substituting the amplitude (1) into eq. (16), we have

K̃(p, t f , p′, ti) =
1

2π~

√
m

2πi~(t f − ti)

∫
dx

∫
dx′ e

i
~ pxe

im(x′−x)2
2~(t f −ti) e−

i
~ p′x′

=
1

2π~

√
m

2πi~(t f − ti)

∫
dx

∫
dx′ e

im
2~(t f −ti)

x′2− i
~

(
mx

~(t f −ti)
+p′

)
x′

e
i
~ pxe

imx2
2~(t f −ti)

=
1

2π~

∫
dx e

i
~ (p−p′)xe−

i(t f −ti)p′2

2m~

= δ(p − p′)e−
i(t f −ti)p2

2m~ .

(19)

Note that this again has a gaussian form as expected for the free particle. Note also
that the amplitude is zero unless the initial and the final momenta coincide, p = p′.
This is nothing but manifestation of the momentum conservation law.

3. By the means of eqs. (18) and (19), the free particle amplitude can be written in the
integral form,

〈x|U(t f , ti)|x′〉 =
1

2π~

∫
dp e

i
~ p(x′−x)e−

i(t f −ti)p2

2m~ . (20)

Recall that the evolution operator U(t f , ti) is expressed through the free particle
Hamiltonian H as follows,

U(t f , ti) = e−
i
~H(t f−ti) . (21)

Let {|ψp〉 , p ∈ R} be the complete set of eigenstates of H. Then,

〈x|U(t f , ti)|x′〉 =

∫
dp 〈x|e−

i
~H(t f−ti)|ψp〉〈ψp|x′〉

=

∫
dp ψp(x)ψ∗p(x′)e−

i
~Ep(t f−ti) ,

(22)

where by Ep we denote the corresponding eigenvalues of H. Comparing this with
the r.h.s. of eq. (20), we can read off directly the explicit form of ψp(x) and Ep,

ψp(x) =
1
√

2π~
e−

i
~ px , Ep =

p2

2m
, (23)

in which we recognize the familiar expressions for the plane waves and the kinetic
energy of the particle.
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3. Diffraction through a slit

1. Using the transitiveness of the amplitude, we have

K(X + x′,T + t′, 0, 0) =

∫ b

−b
dy K(X + x′,T + t′, X + y,T )K(X + y,T, 0, 0)

=
m

2πi~

√
1

t′T

∫ b

−b
dy exp

(
im(x′ − y)2

2~t′

)
exp

(
im(X + y)2

2~T

)
.

(24)

2. The integral (24) is not Gaussian and cannot be computed in elementary functions.
To get some explicit result, one can use the following trick. Introduce the “transpa-
rency function” G(y) of the slit. If

G(y) =

{
1 , −b < y < b ,
0 , otherwise ,

(25)

the formula (24) can be rewritten as

K(X + x′,T + t′, 0, 0) =
m

2πi~

√
1

t′T

∫ ∞

−∞

dy G(y) exp
(
im
2~

(
(x′ − y)2

t′
+

(X + y)2

T

))
.

(26)
Now we replace G(y) by a Gaussian function whose full width at half maximum
approximately equals the size of the slit (see figure 2), 1

G̃(y) = exp
(
−y2/2b2

)
. (27)

With this replacement, the expression (26) turns into

K(X + x′,T + t′, 0, 0) =

m
2πi~

√
1

t′T

∫ ∞

−∞

dy exp
[
im
2~

[
x′2

t′
+

X2

T

]
+

im
~

[
−x′

t′
+

X
T

]
y +

[
im
2~

(
1
t′

+
1
T

)
−

1
2b2

]
y2

]
.

(28)

3. This is a Gaussian integral ! Straightforward computation gives the following result,

K(X + x′,T + t′, 0, 0) =

m
2πi~

√
1

t′T

√
−π

im
2~ (1/t′ + 1/T ) − 1

2b2

exp

 im
2~

(
x′2

t′
+

X2

T

)
+

m2

4~2 (−x′/t′ + X/T )2

im
2~ (1/t′ + 1/T ) − 1

2b2

 ,
(29)

or, using the notation V = X/T ,

K(X + x′,T + t′, 0, 0) =√
m

2πi~

(
T + t′ +

it′T~
mb2

)−1/2

exp

 im
2~

(
x′2/t′2 + V2T

)
+

m2

2~2t′2 (x′ − Vt′)2

im
~

(1/t′ + 1/T ) − 1/b2

 .
(30)

1. For the discussion of the accuracy of this approximation, see Appendix B.
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Figure 2 – Modified transparency function G̃(y) compared to the initial slit. The full width
at half maximum of G̃(y) equals 2

√
2 log 2b ≈ 2.35b which is close to the size of the slit

2b.

4. The probability distribution is obtained by taking square of the modulus of the ex-
pression above. The answer is

P(x′) =
m

2π~
b

T∆X
exp

(
−

(x′ − Vt′)2

(∆X)2

)
, (31)

where we introduced

(∆X)2 = b2(1 + t′/T )2 +
~2t′2

m2b2 . (32)

We observe that P(x′) is a Gaussian distribution centred around the point x′ − Vt′.
Note that V = X/T is the classical average velocity of the particle between the
first and the second measurements. Hence, the quantum wave packet representing
the particle is peaked at the point corresponding to particle’s averaged classical
position.
There are two lessons to learn from eq. (31). First, we check that the group ve-
locity of a Schrödinger wave packet corresponds to the velocity of the particle in
the classical limit. Second, the expression for the dispersion (32) exemplifies a nice
interplay between classical and quantum probability. It tells us that the total dis-
persion of the wave packet contains two contributions. The first one is independent
of ~ and represents a purely classical uncertainty in the position of the particle due
to inaccuracy of the second measurement. The second contribution is of quantum
nature and associated with the wave packet spreading as it moves along the x-axis.
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