Design Technologies for Integrated Systems - EPFL

Homework 4
Assigned: 18/10/2018
Due: 25/10/2018
$F=a^{\prime} b c d^{\prime}+b c+a^{\prime} b c^{\prime} d^{\prime}+a b^{\prime}+a b d^{\prime}$

Problem 1

Given the Boolean function F :
(a) Compute the truth table both in binary and hexadecimal notation.
(b) Draw the min-terms on the cube.
(c) List all the primes (also on the cube).
(d) List all the essential primes.
(e) Find a minimum cover using McCluskey's method (prime implicant table, branch and bound).
(f) Find a minimum cover using Petrick's method (primes in pos, transform in sop).
(g) Show the obtained cover on the cube.

Problem 2

Given the Boolean function F, suppose the variable b is in the don't care (DC) set (b does not affect the functionality of F due to internal flexibilities in the logic network embedding F).
(a) What value for b (0 or 1) is the most convenient to reduce the F cover complexity? In other words, which value for b allows us to find the smallest implicant cover? Show why this is the case.
(b) Find a minimum cover (visually from the cube graphical representation).

Problem 3

Given the Boolean function F and the orthonormal basis $\phi_{1}=a \oplus b, \phi_{2}=a \oplus b^{\prime}$ do:
(a) show that the basis is orthonormal
(b) find the upper and lower bounds of the cofactors with respect to the basis
(c) can you find another set of cofactors with respect to the basis other than the upper and lower bounds? Justify your answer.

Problem 4

Given the Boolean function $F=c^{\prime} d^{\prime}+a b^{\prime} c+a^{\prime} b^{\prime} c d^{\prime}+a^{\prime} b c d+b c d^{\prime}$.
(a) Compute the Boolean difference $\partial F / \partial a$.
(b) Compute the smoothing $S_{a}(F)$.
(c) Compute the consensus $C_{a}(F)$.

