Solutions série 3

Exercice 3. (Theoreme de l'hypothenuse) Soient $P \neq Q$ deux points et \mathcal{C} let cercle de centre le milieu de $[P Q]$ et de rayon $d(P, Q) / 2$. Montrer que pour tout point $R \in \mathcal{C}$ le triangle $[P Q R]$ est rectangle en R.

Solution 3. We will denote by M the midpoint of the segment $[P Q]$. We want to show that $\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle=0$. We have $\overrightarrow{R P}=\overrightarrow{M R}+\overrightarrow{P M}$ and $\overrightarrow{R Q}=\overrightarrow{R M}+\overrightarrow{M Q}$ and therefore

$$
\begin{aligned}
\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle & =\langle\overrightarrow{M R}+P \vec{M}, R \vec{M}+\overrightarrow{M Q}\rangle \\
& =\langle\overrightarrow{M R}, R \vec{M}\rangle+\langle\overrightarrow{M R}, \overrightarrow{M Q}\rangle+\langle\overrightarrow{P M}, R \vec{M}\rangle+\langle\overrightarrow{P M}, \overrightarrow{M Q}\rangle \\
& =-\|\overrightarrow{M R}\|^{2}+\langle\overrightarrow{M R}, \overrightarrow{M Q}\rangle+\langle\overrightarrow{P M}, R \vec{M}\rangle+\|\overrightarrow{P M}\|^{2},
\end{aligned}
$$

using that $\overrightarrow{P M}=\overrightarrow{M Q}$. Since the vector $\overrightarrow{M R}$ has the same norm as $\overrightarrow{P M}$ we obtain

$$
\begin{aligned}
\langle\overrightarrow{R P}, \overrightarrow{R Q}\rangle & =\langle\overrightarrow{M R}, \overrightarrow{M Q}\rangle-\langle\overrightarrow{P M}, \overrightarrow{M R}\rangle \\
& =\langle\overrightarrow{M R}, \overrightarrow{M Q}-\overrightarrow{P M}\rangle=0 \\
& =\langle\overrightarrow{M R}, \overrightarrow{0}\rangle=0,
\end{aligned}
$$

as desired.
Exercice 5. Soient $\vec{u}, \vec{v} \in \mathbb{R}^{2}$ deux vecteurs non-nuls et orthogonaux $(\langle\vec{u}, \vec{v}\rangle=0)$.
On a vu que tout vecteur \vec{w} s'ecrit de maniere unique sous la forme

$$
\vec{w}=\alpha \vec{u}+\beta \vec{v}, \alpha, \beta \in \mathbb{R}
$$

avec des expression explicites pour α et β.

1. Soit $\operatorname{Proj}_{\vec{v}}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$ l'application

$$
\operatorname{Proj}_{\vec{v}}: \vec{w} \mapsto \frac{\langle\vec{w}, \vec{v}\rangle}{\|\vec{v}\|^{2}} \vec{v} .
$$

Montrer que $\operatorname{Proj}_{\vec{v}}$ est lineaire $: \forall \lambda \in \mathbb{R}, \vec{w}, \vec{w}^{\prime} \in \mathbb{R}^{2}$

$$
\operatorname{Proj}_{\vec{v}}\left(\lambda \cdot \vec{w}+\vec{w}^{\prime}\right)=\lambda \cdot \operatorname{Proj}_{\vec{v}}(\vec{w})+\operatorname{Proj}_{\vec{v}}\left(\vec{w}^{\prime}\right) .
$$

calculer son image et son noyau. Calculer $\operatorname{Proj}_{\vec{v}} \circ \operatorname{Proj}_{\vec{v}}$.
2. Montrer que $\operatorname{Proj}_{\vec{v}}$ ne depend en fait que de la droite $(\vec{v})=\mathbb{R} . \vec{v}$ et non du vecteur (non-nul) \vec{v} contenu dans cette droite. On appelle-t-on $\operatorname{Proj}_{\vec{v}}$ la projection orthogonale sur la droite (\vec{v}), pourquoi?
3. Soit $\operatorname{sym}_{\vec{u}}: \mathbb{R}^{2} \mapsto \mathbb{R}^{2}$, l'application

$$
\operatorname{sym}_{\vec{u}}: \vec{w} \mapsto \vec{w}-2 . \operatorname{Proj}_{\vec{v}}(\vec{w}) .
$$

4. Montrer que $\operatorname{sym}_{\vec{u}}$ est une isometrie lineaire et calculer

$$
\operatorname{sym}_{\vec{v}} \circ \operatorname{sym}_{\vec{v}}=\mathrm{Id}_{\mathbb{R}^{2}} .
$$

5. Montrer que $\operatorname{sym}_{\vec{u}}$ ne depend en fait que de la droite $(\vec{u})=\mathbb{R} . \vec{u}$ et non du vecteur (non-nul) \vec{u} contenu dans cette droite. On appelle-t-on sym $_{\vec{v}}$ la symetrie orthogonale par rapport a l'axe (\vec{u}), pourquoi?

Solution 5. For the ease of typing we will drop the arrow from the notation \vec{v} and just write v.

1. We omit the proof that Proj_{v} is linear. To show that $\operatorname{Proj}_{v} \circ \operatorname{Proj}_{v}=\operatorname{Proj}_{v}$ we take an arbitrary $x \in \mathbb{R}^{2}$ and calculate

$$
\begin{aligned}
\|v\|^{2} \operatorname{Proj}_{v}\left(\operatorname{Proj}_{v}(x)\right) & =\left\langle\operatorname{Proj}_{v}(x), v\right\rangle v \\
& =\left\langle\frac{\langle x, v\rangle}{\|v\|^{2}} v, v\right\rangle v=\langle x, v\rangle v .
\end{aligned}
$$

Now we divide by $\|v\|^{2}$ to obtain the result. As for the kernel, note that for any $x \in \mathbb{R}^{2}$ we have

$$
\operatorname{Proj}_{v}(x)=0 \quad \Leftrightarrow \quad \frac{\langle x, v\rangle}{\|v\|^{2}} v=0 \quad \Leftrightarrow \quad\langle x, v\rangle=0
$$

since $v \neq 0$. This shows that the kernel of Proj_{v} is the subspace $\left\{x \in \mathbb{R}^{2}\right.$: $\langle x, v\rangle=0\}$ which is sometimes denoted $(\mathbb{R} v)^{\perp}$ and called the orthogonal complement of v. It is clear that the image of Proj_{v} is contained in the line $\mathbb{R} v$. The identity $\operatorname{Proj}_{v}(t v)=t v$, which holds for all $t \in \mathbb{R}$, shows that reverse inclusion also holds, hence $\operatorname{Proj}_{v}\left(\mathbb{R}^{2}\right)=\mathbb{R} v$.
2. What we need to show is this : For all $t \in \mathbb{R}$ we have $\operatorname{Proj}_{t v}=\operatorname{Proj}_{v}$. To prove this, we take any $x \in \mathbb{R}^{2}$ and compute

$$
\operatorname{Proj}_{t v}(x)=\frac{1}{\|t v\|^{2}}\langle x, t v\rangle t v=\frac{t^{2}}{t^{2}\|v\|^{2}}\langle x, v\rangle v=\operatorname{Proj}_{v}(x) .
$$

3. Nothing was asked here.
4. The map sym_{v} is a linear combination of linear maps (by part 1), hence linear. Therefore, to show that sym_{u} is an isometry, it suffices to verify that $\left\|\operatorname{sym}_{v}(x)\right\|=\|x\|$ for all $x \in \mathbb{R}^{21}$. We use the identity $\|a-b\|^{2}=\|a\|^{2}-$ $2\langle a, b\rangle+\|b\|^{2}$ with $a=x$ and $b=2 \operatorname{Proj}_{v}(x)$ and expand

$$
\begin{aligned}
\left\|\operatorname{sym}_{u}(x)\right\|^{2} & =\|x\|^{2}-4\left\langle x, \frac{\langle x, v\rangle}{\|v\|^{2}} v\right\rangle+4\left\|\frac{\langle x, v\rangle}{\|v\|^{2}} v\right\|^{2} \\
& =\|x\|^{2}-4 \frac{\langle x, v\rangle^{2}}{\|v\|^{2}}+4 \frac{\langle x, v\rangle^{2}\|v\|^{2}}{\|v\|^{4}}=\|x\|^{2}
\end{aligned}
$$

giving the desired equality by taking square roots. We now show that $\operatorname{sym}_{v} \circ \operatorname{sym}_{v}=$ $\mathrm{Id}_{\mathbb{R}^{2}}$. Abbreviate $p=\operatorname{Proj}_{v}, s=\operatorname{sym}_{v}$ and $1=\mathrm{Id}_{\mathbb{R}^{2}}$. Addition and composition of linear maps in $\operatorname{Hom}\left(\mathbb{R}^{2}, \mathbb{R}^{2}\right)$ behave just like the usual addition and multiplication of numbers - except that composition of maps is not commutative. This justifies the following equalities of linear maps

$$
s \circ s=(1-2 p) \circ(1-2 p)=1-2 p-2 p+4 p^{2}=1-4 p+4 p=1,
$$

where we used that $p^{2}=p$ (and nothing more about p).
5. From part 2 it is clear that sym_{v} only depends on the line $\mathbb{R} v$ because the projection Proj_{v} only depends on the line $\mathbb{R} v$ (and the identity map doesn't depend on any choices, of course). Geometrically, sym_{v} is the reflection along the line orthogonal to v.

Exercice 6. Soit $a, b, c \in \mathbb{R}$ tels que $\Delta=b^{2}-4 a c<0$ et $a>0$. On definit le polynome (homogene) de degre 2

$$
Q(X, Y)=a X^{2}+b X Y+c Y^{2}
$$

On obtient donc une fonction

$$
\begin{array}{ccc}
Q: \begin{array}{cc}
\mathbb{R}^{2} & \mapsto
\end{array} \mathbb{R} \\
\vec{u}=(x, y) & \mapsto & Q(P)=Q(x, y)
\end{array}
$$

(ici un vecteur \vec{u} du plan est repere par ces coordonnees dans la base canonique.) On defini une application

$$
\langle\cdot, \cdot\rangle_{Q}: \mathbb{R}^{2} \times \mathbb{R}^{2} \rightarrow \mathbb{R}
$$

par

$$
\langle\vec{u}, \vec{v}\rangle_{Q}:=\frac{1}{4}(Q(\vec{u}+\vec{v})-Q(\vec{u}-\vec{v})) .
$$

1. Que vaut $\langle\vec{u}, \vec{u}\rangle_{Q}$?

[^0]2. Montrer que $\langle\cdot, \cdot\rangle_{Q}$ est un produit scalaire (defini-positif) sur \mathbb{R}^{2}. On pose alors
$$
\|\cdot\|_{Q}: \vec{u} \in \mathbb{R}^{2} \mapsto\langle\vec{u}, \vec{u}\rangle_{Q}^{1 / 2}
$$
et
$$
d_{Q}(\cdot, \cdot):(R, S) \in \mathbb{R}^{2} \times \mathbb{R}^{2} \mapsto\|\overrightarrow{R S}\|_{Q}
$$
3. Montrer que inegalite de Cauchy-Schwarz est vraie :
$$
\forall \vec{u}, \vec{v} \in \mathbb{R}^{2},\left|\langle\vec{u}, \vec{v}\rangle_{Q}\right| \leqslant\|\vec{u}\|_{Q}\|\vec{v}\|_{Q}
$$
avec egalite si et seulement si \vec{u} et \vec{v} sont proportionnels.
4. Montrer que d_{Q} definit une distance sur \mathbb{R}^{2}. Si $a=b=c=1$ dessiner la boule unite $B(0,1)_{Q}$.
5. Dans le cas general, etant donne deux points R, S, on definit le "segment" relativement a la distance d_{Q} par
$$
[R, S]_{Q}=\left\{T \in \mathbb{R}^{2} \mid d_{Q}(R, T)+d_{Q}(T, S)=d_{Q}(R, S)\right\}
$$

Quelle est la forme de ce Q-segment?
6. Montrer que pour tout $\vec{u} \neq \overrightarrow{0}$, il existe $\vec{v} \neq 0$ tel que $\langle\vec{u}, \vec{v}\rangle_{Q}=0$ (on dira que \vec{u}, \vec{v} sont orthogonaux pour le produit scalaire $\langle\cdot, \cdot\rangle_{Q}$. Montrer qu'alors pour tout $\vec{w} \in \mathbb{R}^{2}$ il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$
\vec{w}=\lambda \vec{u}+\mu \vec{v}
$$

et calculer λ, μ en fonction du produit scalaire $\langle\cdot, \cdot\rangle_{Q}$.
Solution 6. We omit the decorating arrow in the notation for a vector.

1. It follows immediately from the definitions that $Q(t v)=t^{2} Q(v)$ for all $t \in \mathbb{R}$ and all $v \in \mathbb{R}^{2}$ and it is also clear that $Q(0)=0$. Therefore we have

$$
\begin{aligned}
\langle u, u\rangle_{Q} & =\frac{1}{4}(Q(u+u)-Q(u-u))=\frac{1}{4}(Q(2 u)-Q(0)) \\
& =\frac{1}{4}(4 Q(u))=Q(u) .
\end{aligned}
$$

2. To prove that $\langle\cdot, \cdot\rangle_{Q}$ is symmetric and bilinear, we express for general $u_{1}=$ $\binom{x_{1}}{y_{1}}, u_{2}=\binom{x_{2}}{y_{2}} \in \mathbb{R}^{2}$ the inner product

$$
\begin{aligned}
\left\langle u_{1}, u_{2}\right\rangle_{Q}= & \frac{1}{4}\left(Q\left(\binom{x_{1}+x_{2}}{y_{1}+y_{2}}\right)-Q\left(\binom{x_{1}-x_{2}}{y_{1}-y_{2}}\right)\right) \\
= & \frac{1}{4}\left(a\left(x_{1}+x_{2}\right)^{2}+\left(x_{1}+x_{2}\right)\left(y_{1}+y_{2}\right)+c\left(y_{1}+y_{2}\right)^{2}\right. \\
& \left.\quad-a\left(x_{1}-x_{2}\right)^{2}-b\left(x_{1}-x_{2}\right)\left(y_{1}-y_{2}\right)-c\left(y_{1}-y_{2}\right)^{2}\right) \\
= & a x_{1} x_{2}+\frac{b}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)+c y_{1} y_{2} .
\end{aligned}
$$

This makes it clear that $\left\langle u_{1}, u_{2}\right\rangle_{Q}=\left\langle u_{2}, u_{1}\right\rangle_{Q}$ and the bilinearity now follows from

$$
\begin{aligned}
\left\langle u_{1}+t u_{1}^{\prime}, u_{2}\right\rangle_{Q}= & a\left(x_{1}+t x_{1}^{\prime}\right) x_{2}+\frac{b}{2}\left(\left(x_{1}+t x_{1}^{\prime}\right) y_{2}+x_{2}\left(y_{1}+t y_{1}^{\prime}\right)\right)+c\left(y_{1}+t y_{1}^{\prime}\right) y_{2} \\
= & a x_{1} x_{2}+\frac{b}{2}\left(x_{1} y_{2}+x_{2} y_{1}\right)+c y_{1} y_{2} \\
& t\left(a x_{1}^{\prime} x_{2}+\frac{b}{2}\left(x_{1}^{\prime} y_{2}+x_{2} y_{1}^{\prime}\right)+c y_{1}^{\prime} y_{2}\right) \\
= & \left\langle u_{1}, u_{2}\right\rangle_{Q}+t\left\langle u_{1}^{\prime}, u_{2}\right\rangle_{Q} .
\end{aligned}
$$

To show that \langle,\rangle_{Q} is positive definite we complete the square in the definition of Q and write

$$
\begin{aligned}
Q(x, y) & =a x^{2}+b x y+c y^{2} \\
& =a\left(x^{2}+\frac{b}{a} y x\right)+c y^{2} \\
& =a\left(x+\frac{b}{2 a} y\right)^{2}-a\left(\frac{b}{2 a} y\right)^{2}+c y^{2} \\
& =a\left(x+\frac{b}{2 a} y\right)^{2}+\left(c-\frac{b^{2}}{4 a}\right) y^{2} \\
& =a\left(x+\frac{b}{2 a} y\right)^{2}+\left(\frac{4 a c-b^{2}}{4 a}\right) y^{2} .
\end{aligned}
$$

Since we are assuming that $a>0$ and $4 a c-b^{2}>0$, we always have $Q(x, y) \geqslant 0$. Suppose that $Q(x, y)=0$, then we must have

$$
a\left(x+\frac{b}{2 a} y\right)^{2}=0 \quad \text { and } \quad\left(\frac{4 a c-b^{2}}{4 a}\right) y^{2}=0
$$

This implies that $y=0$ and then $x=0$ (again because $a>0$ and $4 a c-b^{2}>0$).
3. The proof of the Cauchy-Schwarz inequality given in the lecture works for all inner products : One considers the non-negative polynomial function $P(t)=$ $\|t u+v\|_{Q}^{2}$ of one real variable $t \in \mathbb{R}$ and and deduces from fact that its discriminant has to be $\leqslant 0$ the Cauchy-Schwarz inequality. (The discriminant can't be >0 because otherwise P would have two distinct real roots and thus would assume strictly negative values as well).
We give a second proof using orthogonal projections. These can be defined for all inner products on \mathbb{R}^{2}, in particular for $\langle\cdot, \cdot\rangle_{Q}$. When proving $\left|\langle u, v\rangle_{Q}\right| \leqslant$ $\|u\|_{Q}\|v\|_{Q}$ we can assume that $v \neq 0$ (because for $v=0$, the inequality becomes $0 \leqslant 0)$. Think of v as being fixed. We write an arbitrary u as a sum of its orthogonal projection onto $\mathbb{R} v$ and an other vector :

$$
u=\operatorname{Proj}_{v}(u)+\left(u-\operatorname{Proj}_{v}(u)\right) .
$$

A small computation shows that $\left\langle v, u-\operatorname{Proj}_{v}(u)\right\rangle=0, \operatorname{implying}\left\langle\operatorname{Proj}_{v}(u), u-\right.$ $\left.\operatorname{Proj}_{v}(u)\right\rangle=0$. We may think of $u-\operatorname{Proj}_{v}(u)$ as the orthogonal projection of u onto a line orthogonal to the line $\mathbb{R} v$. Using this orthogonality we get

$$
\|u\|_{Q}^{2}=\left\|\operatorname{Proj}_{v}(u)\right\|_{Q}^{2}+\left\|u-\operatorname{Proj}_{v}(u)\right\|_{Q}^{2} .
$$

Now we just use that $\left\|u-\operatorname{Proj}_{v}(u)\right\|_{Q}^{2} \geqslant 0$ and obtain

$$
\|u\|_{Q}^{2} \geqslant\left\|\operatorname{Proj}_{v}(u)\right\|_{Q}^{2}=\frac{\langle u, v\rangle^{2}}{\|v\|_{Q}^{4}}\|v\|_{Q}^{2}
$$

which rearranges to give the Cauchy-Schwarz inequality. Furthermore, if the vectors are not proportional, then u does not belong to the line $\mathbb{R} v$, which we proved is the image of Proj_{v}. In particular, $u \neq \operatorname{Proj}_{v}(u)$ and so $\| u-$ $\operatorname{Proj}_{v}(u) \|_{Q}^{2}>0$ and we see that the inequality becomes strict.
4. In general, given $A, B>0$ we know how the set $\left\{(x, y) \in \mathbb{R}^{2}: A x^{2}+B y^{2} \leqslant\right.$ 1\} looks like : it is a filled ellipse with center at the origin, intersecting the coordinate axes at the points $\left(\pm A^{-1 / 2}, 0\right)$ and $\left(0, \pm B^{-1 / 2}\right)$. We can reduce the general case to this case by finding a linear map $\varphi: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ such that the quadratic from $(Q \circ \varphi)(x, y)$ has no mixed terms $x y$. We can take the map $\varphi(x, y):=(x-y, x+y)$, because

$$
Q(x-y, x+y)=(x-y)^{2}+(x-y)(x+y)+(x+y)^{2}=3 x^{2}+y^{2} .
$$

In principle one can find a suitable φ by writing down a general linear map $\varphi(x, y)=(\alpha x+\beta y, \gamma x+\delta y)$ with $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ to obtain a condition on $\alpha, \beta, \gamma, \delta$. (A more enlightening method will be taught in linear algebra at some point). Define

$$
\begin{aligned}
& E:=\left\{(x, y) \in \mathbb{R}^{2}: 3 x^{2}+y^{2} \leqslant 1\right\} \\
& B:=\left\{(x, y) \in \mathbb{R}^{2}: Q(x, y)=x^{2}+x y+y^{2} \leqslant 1\right\}
\end{aligned}
$$

By definition, we have $\varphi(E)=B$. So we only need to figure out what the linear $\operatorname{map} \varphi$ does geometrically. We can write $\varphi(v)=\sqrt{2} \psi(v)$, where $\psi(v)=\frac{1}{\sqrt{2}} \varphi(v)$. Then ψ takes the standard orthonormal basis of \mathbb{R}^{2} to the orthonormal basis $\binom{1 / \sqrt{2}}{1 / \sqrt{2}},\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}$ of \mathbb{R}^{2} and we see that ψ is a counter-clockwise rotation with angle $\pi / 2$. The map φ is therefore a rotation, followed by a scaling with factor $\sqrt{2}$ and we see that B is a filled ellipse centered at the origin, intersecting its axes $\mathbb{R}\binom{1 / \sqrt{2}}{1 / \sqrt{2}}$ and $\mathbb{R}\binom{-1 / \sqrt{2}}{1 / \sqrt{2}}$ at distances $\frac{\sqrt{2}}{\sqrt{3}}$ and $\sqrt{2}$ respectively.

5. Define $\mathcal{S}:=\{R+t(S-R): t \in[0,1]\}$. We claim that

$$
[R, S]_{Q}=\mathcal{S}
$$

The containment $\mathcal{S} \subseteq[R, S]_{Q}$ holds because for any $t \in[0,1]$ we have

$$
\begin{aligned}
d_{Q}(R, R+t(S-R)) & +d_{Q}(R+t(S-R), S)= \\
& =\|R+t(S-R)-R\|_{Q}+\|S-(R+t(S-R))\|_{Q} \\
& =t\|S-R\|_{Q}+(1-t)\|S-R\|_{Q} \\
& =\|S-R\|_{Q}=d_{Q}(R, S) .
\end{aligned}
$$

Notice that we have used here that $t \in[0,1]$ when pulling the scalar $1-t$ out of the norm. Now let $P \in[R, S]_{Q}$. We want to show that $P \in \mathcal{S}$.
We first try to show that P belongs to line passing through R and S. To do that, we have to show that $P-R$ is proportional to $S-R$, i.e. that

$$
\left|\langle P-R, S-R\rangle_{Q}\right|=\|P-R\|_{Q}\|S-R\|_{Q}
$$

using the Cauchy Schwarz inequality theorem. We have information about distances and not inner products. So to bring distances back into the argument we could try to use the formula $\langle a, b\rangle_{Q}=\frac{1}{2}(Q(a+b)-Q(a)-Q(b))$. Doing so with $a=R-P$ and $b=S-R$ gives (dropping henceforth the subscript Q from the notations)

$$
\begin{aligned}
\langle R-P, S-R\rangle & =\frac{1}{2}\left(\|(R-P)+(S-R)\|^{2}-\|R-P\|^{2}-\|S-R\|^{2}\right) \\
& =\frac{1}{2}\left(\|S-P\|^{2}-\|R-P\|^{2}-\|S-R\|^{2}\right) \\
& =\frac{1}{2}\left((\|S-R\|-\|R-P\|)^{2}-\|R-P\|^{2}-\|S-R\|^{2}\right) \\
& =-\|S-R\|\|R-P\|,
\end{aligned}
$$

using the assumption $P \in \mathcal{S}$ in the third step. By taking absolute values we get the desired equality.
So now we know that P must at least belong to the the line passing through R and S, which means that we can write $P=R+t(S-R)$ for some real number $t \in \mathbb{R}$. The condition $d_{Q}(R, P)+d_{Q}(P, S)=d_{Q}(R, S)$ tells us that

$$
(|t|+|1-t|)\|R-S| |=\| R-S| |
$$

and hence $|t|+|1-t|=1$. This forces $t \in[0,1]$ and finishes the argument. Interestingly enough we have in the end reduced the original problem to the problem of showing $|t|+|1-t|=1 \Rightarrow t \in[0,1]$, which is the one-dimensional analogue of the exercise. Notice that we have also provided the solution for the first part of Exercise 2, because the proof works for all inner products.
6. Let u be a nonzero vector. Take any vector $x \notin \mathbb{R} u$. We have seen in our second proof of the Cauchy-Schwarz inequality (in part 3) that the vector $v:=$ $x-\operatorname{Proj}_{u}(x)$ is not zero and orthogonal to u. Since u and v are orthogonal and both nonzero they are linearly independent and therefore they must span \mathbb{R}^{2}. We can give a formula for the numbers λ and μ since if $w=\lambda u+\mu v$ then

$$
\langle u, w\rangle=\langle u, \lambda u+\mu v\rangle=\lambda\|u\|^{2}+\mu\langle u, v\rangle=\lambda\|u\|^{2}
$$

and so $\lambda=\frac{\langle u, w\rangle}{\|u\|^{2}}$ and similarly $\mu=\frac{\langle v, w\rangle}{\|v\|^{2}}$. Thus, we see that the decomposition of w is given by $w=\operatorname{Proj}_{u}(w)+\operatorname{Proj}_{v}(w)$.

[^0]: 1. because then we have $d\left(\operatorname{sym}_{v}(x), \operatorname{sym}_{v}(y)\right)=\left\|\operatorname{sym}_{v}(x)-\operatorname{sym}_{v}(y)\right\|=\left\|\operatorname{sym}_{v}(x-y)\right\|=$ $\|x-y\|=d(x, y)$ for all $x, y \in \mathbb{R}^{2}$.
