Automne 2018

EPFL Geometrie, MATH-120

Solutions série 3

Exercice 3. (Theoreme de l'hypothenuse) Soient $P \neq Q$ deux points et C let cercle de centre le milieu de [PQ] et de rayon d(P,Q)/2. Montrer que pour tout point $R \in C$ le triangle [PQR] est rectangle en R.

Solution 3. We will denote by M the midpoint of the segment [PQ]. We want to show that $\langle \vec{RP}, \vec{RQ} \rangle = 0$. We have $\vec{RP} = \vec{MR} + \vec{PM}$ and $\vec{RQ} = \vec{RM} + \vec{MQ}$ and therefore

$$\begin{split} \langle \vec{RP}, \vec{RQ} \rangle &= \langle \vec{MR} + \vec{PM}, \vec{RM} + \vec{MQ} \rangle \\ &= \langle \vec{MR}, \vec{RM} \rangle + \langle \vec{MR}, \vec{MQ} \rangle + \langle \vec{PM}, \vec{RM} \rangle + \langle \vec{PM}, \vec{MQ} \rangle \\ &= -||\vec{MR}||^2 + \langle \vec{MR}, \vec{MQ} \rangle + \langle \vec{PM}, \vec{RM} \rangle + ||\vec{PM}||^2, \end{split}$$

using that $\vec{PM} = \vec{MQ}$. Since the vector \vec{MR} has the same norm as \vec{PM} we obtain

$$\langle \vec{RP}, \vec{RQ} \rangle = \langle \vec{MR}, \vec{MQ} \rangle - \langle \vec{PM}, \vec{MR} \rangle$$

= $\langle \vec{MR}, \vec{MQ} - \vec{PM} \rangle = 0$
= $\langle \vec{MR}, \vec{0} \rangle = 0,$

as desired.

Exercice 5. Soient $\vec{u}, \vec{v} \in \mathbb{R}^2$ deux vecteurs non-nuls et orthogonaux ($\langle \vec{u}, \vec{v} \rangle = 0$).

On a vu que tout vecteur \vec{w} s'ecrit de maniere unique sous la forme

 $\vec{w} = \alpha \vec{u} + \beta \vec{v}, \ \alpha, \beta \in \mathbb{R}$

avec des expression explicites pour α et β .

1. Soit $\operatorname{Proj}_{\vec{v}} : \mathbb{R}^2 \mapsto \mathbb{R}^2$ l'application

$$\operatorname{Proj}_{\vec{v}}: \vec{w} \mapsto \frac{\langle \vec{w}, \vec{v} \rangle}{\|\vec{v}\|^2} \vec{v}.$$

Montrer que $\operatorname{Proj}_{\vec{v}}$ est lineaire : $\forall \lambda \in \mathbb{R}, \ \vec{w}, \vec{w}' \in \mathbb{R}^2$

$$\operatorname{Proj}_{\vec{v}}(\lambda.\vec{w} + \vec{w}') = \lambda.\operatorname{Proj}_{\vec{v}}(\vec{w}) + \operatorname{Proj}_{\vec{v}}(\vec{w}').$$

calculer son image et son noyau. Calculer $\operatorname{Proj}_{\vec{v}} \circ \operatorname{Proj}_{\vec{v}}$.

- 2. Montrer que $\operatorname{Proj}_{\vec{v}}$ ne depend en fait que de la droite $(\vec{v}) = \mathbb{R}.\vec{v}$ et non du vecteur (non-nul) \vec{v} contenu dans cette droite. On appelle-t-on $\operatorname{Proj}_{\vec{v}}$ la projection orthogonale sur la droite (\vec{v}) , pourquoi?
- 3. Soit sym_{\vec{u}} : $\mathbb{R}^2 \mapsto \mathbb{R}^2$, l'application

$$\operatorname{sym}_{\vec{u}}: \vec{w} \mapsto \vec{w} - 2. \operatorname{Proj}_{\vec{v}}(\vec{w}).$$

4. Montrer que sym_{\vec{u}} est une isometrie lineaire et calculer

$$\operatorname{sym}_{\vec{v}} \circ \operatorname{sym}_{\vec{v}} = \operatorname{Id}_{\mathbb{R}^2}.$$

5. Montrer que sym_{\vec{u}} ne depend en fait que de la droite (\vec{u}) = $\mathbb{R}.\vec{u}$ et non du vecteur (non-nul) \vec{u} contenu dans cette droite. On appelle-t-on sym_{\vec{v}} la symetrie orthogonale par rapport a l'axe (\vec{u}), pourquoi?

Solution 5. For the ease of typing we will drop the arrow from the notation \vec{v} and just write v.

1. We omit the proof that Proj_{v} is linear. To show that $\operatorname{Proj}_{v} \circ \operatorname{Proj}_{v} = \operatorname{Proj}_{v}$ we take an arbitrary $x \in \mathbb{R}^{2}$ and calculate

$$\begin{split} ||v||^2 \operatorname{Proj}_v(\operatorname{Proj}_v(x)) &= \langle \operatorname{Proj}_v(x), v \rangle v \\ &= \left\langle \frac{\langle x, v \rangle}{||v||^2} v, v \right\rangle v = \langle x, v \rangle v. \end{split}$$

Now we divide by $||v||^2$ to obtain the result. As for the kernel, note that for any $x \in \mathbb{R}^2$ we have

$$\operatorname{Proj}_{v}(x) = 0 \quad \Leftrightarrow \quad \frac{\langle x, v \rangle}{||v||^{2}}v = 0 \quad \Leftrightarrow \quad \langle x, v \rangle = 0,$$

since $v \neq 0$. This shows that the kernel of Proj_{v} is the subspace $\{x \in \mathbb{R}^{2} : \langle x, v \rangle = 0\}$ which is sometimes denoted $(\mathbb{R}v)^{\perp}$ and called the orthogonal complement of v. It is clear that the image of Proj_{v} is contained in the line $\mathbb{R}v$. The identity $\operatorname{Proj}_{v}(tv) = tv$, which holds for all $t \in \mathbb{R}$, shows that reverse inclusion also holds, hence $\operatorname{Proj}_{v}(\mathbb{R}^{2}) = \mathbb{R}v$.

2. What we need to show is this : For all $t \in \mathbb{R}$ we have $\operatorname{Proj}_{tv} = \operatorname{Proj}_{v}$. To prove this, we take any $x \in \mathbb{R}^2$ and compute

$$\operatorname{Proj}_{tv}(x) = \frac{1}{||tv||^2} \langle x, tv \rangle tv = \frac{t^2}{t^2 ||v||^2} \langle x, v \rangle v = \operatorname{Proj}_v(x).$$

3. Nothing was asked here.

4. The map sym_v is a linear combination of linear maps (by part 1), hence linear. Therefore, to show that sym_u is an isometry, it suffices to verify that $||\operatorname{sym}_v(x)|| = ||x||$ for all $x \in \mathbb{R}^{2\,1}$. We use the identity $||a - b||^2 = ||a||^2 - 2\langle a, b \rangle + ||b||^2$ with a = x and $b = 2 \operatorname{Proj}_v(x)$ and expand

$$\begin{split} ||\operatorname{sym}_{u}(x)||^{2} &= ||x||^{2} - 4\langle x, \frac{\langle x, v \rangle}{||v||^{2}}v \rangle + 4||\frac{\langle x, v \rangle}{||v||^{2}}v||^{2} \\ &= ||x||^{2} - 4\frac{\langle x, v \rangle^{2}}{||v||^{2}} + 4\frac{\langle x, v \rangle^{2}||v||^{2}}{||v||^{4}} = ||x||^{2}, \end{split}$$

giving the desired equality by taking square roots. We now show that $\operatorname{sym}_v \circ \operatorname{sym}_v = \operatorname{Id}_{\mathbb{R}^2}$. Abbreviate $p = \operatorname{Proj}_v$, $s = \operatorname{sym}_v$ and $1 = \operatorname{Id}_{\mathbb{R}^2}$. Addition and composition of linear maps in $\operatorname{Hom}(\mathbb{R}^2, \mathbb{R}^2)$ behave just like the usual addition and multiplication of numbers – except that composition of maps is not commutative. This justifies the following equalities of linear maps

$$s \circ s = (1 - 2p) \circ (1 - 2p) = 1 - 2p - 2p + 4p^2 = 1 - 4p + 4p = 1,$$

where we used that $p^2 = p$ (and nothing more about p).

5. From part 2 it is clear that sym_v only depends on the line $\mathbb{R}v$ because the projection Proj_v only depends on the line $\mathbb{R}v$ (and the identity map doesn't depend on any choices, of course). Geometrically, sym_v is the reflection along the line orthogonal to v.

Exercice 6. Soit $a, b, c \in \mathbb{R}$ tels que $\Delta = b^2 - 4ac < 0$ et a > 0. On definit le polynome (homogene) de degre 2

$$Q(X,Y) = aX^2 + bXY + cY^2.$$

On obtient donc une fonction

$$Q: \begin{array}{ccc} \mathbb{R}^2 & \mapsto & \mathbb{R} \\ \vec{u} = (x, y) & \mapsto & Q(P) = Q(x, y) \end{array}$$

(ici un vecteur \vec{u} du plan est repere par ces coordonnees dans la base canonique.) On defini une application

$$\langle \cdot, \cdot \rangle_Q : \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}.$$

par

$$\langle \vec{u}, \vec{v} \rangle_Q := \frac{1}{4} (Q(\vec{u} + \vec{v}) - Q(\vec{u} - \vec{v})).$$

1. Que vaut $\langle \vec{u}, \vec{u} \rangle_Q$?

^{1.} because then we have $d(\operatorname{sym}_v(x), \operatorname{sym}_v(y)) = ||\operatorname{sym}_v(x) - \operatorname{sym}_v(y)|| = ||\operatorname{sym}_v(x - y)|| = ||x - y|| = d(x, y)$ for all $x, y \in \mathbb{R}^2$.

2. Montrer que $\langle \cdot, \cdot \rangle_Q$ est un produit scalaire (defini-positif) sur \mathbb{R}^2 . On pose alors

$$\|\cdot\|_Q: \vec{u} \in \mathbb{R}^2 \mapsto \langle \vec{u}, \vec{u} \rangle_Q^{1/2}$$

 et

$$d_Q(\cdot, \cdot) : (R, S) \in \mathbb{R}^2 \times \mathbb{R}^2 \mapsto \|\vec{RS}\|_Q$$

3. Montrer que inegalite de Cauchy-Schwarz est vraie :

$$\forall \vec{u}, \vec{v} \in \mathbb{R}^2, \ |\langle \vec{u}, \vec{v} \rangle_Q| \leqslant \|\vec{u}\|_Q \|\vec{v}\|_Q$$

avec egalite si et seulement si \vec{u} et \vec{v} sont proportionnels.

- 4. Montrer que d_Q definit une distance sur \mathbb{R}^2 . Si a = b = c = 1 dessiner la boule unite $B(0,1)_Q$.
- 5. Dans le cas general, et ant donne deux points R, S, on definit le "segment" relativement a la distance d_Q par

$$[R,S]_Q = \{T \in \mathbb{R}^2 | d_Q(R,T) + d_Q(T,S) = d_Q(R,S)\}.$$

Quelle est la forme de ce Q-segment?

6. Montrer que pour tout $\vec{u} \neq \vec{0}$, il existe $\vec{v} \neq 0$ tel que $\langle \vec{u}, \vec{v} \rangle_Q = 0$ (on dira que \vec{u}, \vec{v} sont orthogonaux pour le produit scalaire $\langle \cdot, \cdot \rangle_Q$. Montrer qu'alors pour tout $\vec{w} \in \mathbb{R}^2$ il existe $\lambda, \mu \in \mathbb{R}$ tels que

$$\vec{w} = \lambda \vec{u} + \mu \vec{v}$$

et calculer λ, μ en fonction du produit scalaire $\langle \cdot, \cdot \rangle_Q$.

Solution 6. We omit the decorating arrow in the notation for a vector.

1. It follows immediately from the definitions that $Q(tv) = t^2 Q(v)$ for all $t \in \mathbb{R}$ and all $v \in \mathbb{R}^2$ and it is also clear that Q(0) = 0. Therefore we have

$$\langle u, u \rangle_Q = \frac{1}{4} \left(Q(u+u) - Q(u-u) \right) = \frac{1}{4} \left(Q(2u) - Q(0) \right)$$

= $\frac{1}{4} (4Q(u)) = Q(u).$

2. To prove that $\langle \cdot, \cdot \rangle_Q$ is symmetric and bilinear, we express for general $u_1 = \begin{pmatrix} x_1 \\ y_1 \end{pmatrix}, u_2 = \begin{pmatrix} x_2 \\ y_2 \end{pmatrix} \in \mathbb{R}^2$ the inner product

$$\langle u_1, u_2 \rangle_Q = \frac{1}{4} \left(Q(\begin{pmatrix} x_1 + x_2 \\ y_1 + y_2 \end{pmatrix}) - Q(\begin{pmatrix} x_1 - x_2 \\ y_1 - y_2 \end{pmatrix}) \right)$$

= $\frac{1}{4} (a(x_1 + x_2)^2 + (x_1 + x_2)(y_1 + y_2) + c(y_1 + y_2)^2 - a(x_1 - x_2)^2 - b(x_1 - x_2)(y_1 - y_2) - c(y_1 - y_2)^2)$
= $ax_1x_2 + \frac{b}{2} (x_1y_2 + x_2y_1) + cy_1y_2.$

This makes it clear that $\langle u_1, u_2 \rangle_Q = \langle u_2, u_1 \rangle_Q$ and the bilinearity now follows from

$$\langle u_1 + tu'_1, u_2 \rangle_Q = a(x_1 + tx'_1)x_2 + \frac{b}{2}((x_1 + tx'_1)y_2 + x_2(y_1 + ty'_1)) + c(y_1 + ty'_1)y_2 = ax_1x_2 + \frac{b}{2}(x_1y_2 + x_2y_1) + cy_1y_2 t(ax'_1x_2 + \frac{b}{2}(x'_1y_2 + x_2y'_1) + cy'_1y_2) = \langle u_1, u_2 \rangle_Q + t\langle u'_1, u_2 \rangle_Q.$$

To show that \langle,\rangle_Q is positive definite we complete the square in the definition of Q and write

$$Q(x, y) = ax^{2} + bxy + cy^{2}$$

= $a(x^{2} + \frac{b}{a}yx) + cy^{2}$
= $a(x + \frac{b}{2a}y)^{2} - a(\frac{b}{2a}y)^{2} + cy^{2}$
= $a(x + \frac{b}{2a}y)^{2} + (c - \frac{b^{2}}{4a})y^{2}$
= $a(x + \frac{b}{2a}y)^{2} + (\frac{4ac - b^{2}}{4a})y^{2}$.

Since we are assuming that a > 0 and $4ac - b^2 > 0$, we always have $Q(x, y) \ge 0$. Suppose that Q(x, y) = 0, then we must have

$$a(x + \frac{b}{2a}y)^2 = 0$$
 and $(\frac{4ac-b^2}{4a})y^2 = 0$

This implies that y = 0 and then x = 0 (again because a > 0 and $4ac - b^2 > 0$).

3. The proof of the Cauchy-Schwarz inequality given in the lecture works for all inner products : One considers the non-negative polynomial function $P(t) = ||tu + v||_Q^2$ of one real variable $t \in \mathbb{R}$ and and deduces from fact that its discriminant has to be ≤ 0 the Cauchy-Schwarz inequality. (The discriminant can't be > 0 because otherwise P would have two distinct real roots and thus would assume strictly negative values as well).

We give a second proof using orthogonal projections. These can be defined for all inner products on \mathbb{R}^2 , in particular for $\langle \cdot, \cdot \rangle_Q$. When proving $|\langle u, v \rangle_Q| \leq$ $||u||_Q ||v||_Q$ we can assume that $v \neq 0$ (because for v = 0, the inequality becomes $0 \leq 0$). Think of v as being fixed. We write an arbitrary u as a sum of its orthogonal projection onto $\mathbb{R}v$ and an other vector :

$$u = \operatorname{Proj}_{v}(u) + (u - \operatorname{Proj}_{v}(u)).$$

A small computation shows that $\langle v, u - \operatorname{Proj}_v(u) \rangle = 0$, implying $\langle \operatorname{Proj}_v(u), u - \operatorname{Proj}_v(u) \rangle = 0$. We may think of $u - \operatorname{Proj}_v(u)$ as the orthogonal projection of u onto a line orthogonal to the line $\mathbb{R}v$. Using this orthogonality we get

$$||u||_Q^2 = ||\operatorname{Proj}_v(u)||_Q^2 + ||u - \operatorname{Proj}_v(u)||_Q^2$$

Now we just use that $||u - \operatorname{Proj}_{v}(u)||_{Q}^{2} \ge 0$ and obtain

$$||u||_Q^2 \ge ||\operatorname{Proj}_v(u)||_Q^2 = \frac{\langle u, v \rangle^2}{||v||_Q^4} ||v||_Q^2,$$

which rearranges to give the Cauchy-Schwarz inequality. Furthermore, if the vectors are not proportional, then u does not belong to the line $\mathbb{R}v$, which we proved is the image of Proj_v . In particular, $u \neq \operatorname{Proj}_v(u)$ and so $||u - \operatorname{Proj}_v(u)||_Q^2 > 0$ and we see that the inequality becomes strict.

4. In general, given A, B > 0 we know how the set $\{(x, y) \in \mathbb{R}^2 : Ax^2 + By^2 \leq 1\}$ looks like : it is a filled ellipse with center at the origin, intersecting the coordinate axes at the points $(\pm A^{-1/2}, 0)$ and $(0, \pm B^{-1/2})$. We can reduce the general case to this case by finding a linear map $\varphi : \mathbb{R}^2 \to \mathbb{R}^2$ such that the quadratic from $(Q \circ \varphi)(x, y)$ has no mixed terms xy. We can take the map $\varphi(x, y) := (x - y, x + y)$, because

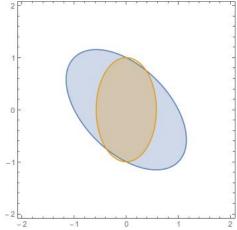
$$Q(x - y, x + y) = (x - y)^{2} + (x - y)(x + y) + (x + y)^{2} = 3x^{2} + y^{2}.$$

In principle one can find a suitable φ by writing down a general linear map $\varphi(x,y) = (\alpha x + \beta y, \gamma x + \delta y)$ with $\alpha, \beta, \gamma, \delta \in \mathbb{R}$ to obtain a condition on $\alpha, \beta, \gamma, \delta$. (A more enlightening method will be taught in linear algebra at some point). Define

$$E := \{ (x, y) \in \mathbb{R}^2 : 3x^2 + y^2 \leq 1 \}$$

$$B := \{ (x, y) \in \mathbb{R}^2 : Q(x, y) = x^2 + xy + y^2 \leq 1 \}$$

By definition, we have $\varphi(E) = B$. So we only need to figure out what the linear map φ does geometrically. We can write $\varphi(v) = \sqrt{2}\psi(v)$, where $\psi(v) = \frac{1}{\sqrt{2}}\varphi(v)$. Then ψ takes the standard orthonormal basis of \mathbb{R}^2 to the orthonormal basis $\binom{1/\sqrt{2}}{1/\sqrt{2}}, \binom{-1/\sqrt{2}}{1/\sqrt{2}}$ of \mathbb{R}^2 and we see that ψ is a counter-clockwise rotation with angle $\pi/2$. The map φ is therefore a rotation, followed by a scaling with factor $\sqrt{2}$ and we see that B is a filled ellipse centered at the origin, intersecting its axes $\mathbb{R}\binom{1/\sqrt{2}}{1/\sqrt{2}}$ and $\mathbb{R}\binom{-1/\sqrt{2}}{1/\sqrt{2}}$ at distances $\frac{\sqrt{2}}{\sqrt{3}}$ and $\sqrt{2}$ respectively.



5. Define $S := \{R + t(S - R) : t \in [0, 1]\}$. We claim that

$$[R,S]_Q = \mathcal{S}.$$

The containment $\mathcal{S} \subseteq [R, S]_Q$ holds because for any $t \in [0, 1]$ we have

$$d_Q(R, R + t(S - R)) + d_Q(R + t(S - R), S) =$$

= $||R + t(S - R) - R||_Q + ||S - (R + t(S - R))||_Q$
= $t||S - R||_Q + (1 - t)||S - R||_Q$
= $||S - R||_Q = d_Q(R, S).$

Notice that we have used here that $t \in [0, 1]$ when pulling the scalar 1 - t out of the norm. Now let $P \in [R, S]_Q$. We want to show that $P \in S$.

We first try to show that P belongs to line passing through R and S. To do that, we have to show that P - R is proportional to S - R, i.e. that

$$|\langle P - R, S - R \rangle_Q| = ||P - R||_Q ||S - R||_Q$$

using the Cauchy Schwarz inequality theorem. We have information about distances and not inner products. So to bring distances back into the argument we could try to use the formula $\langle a, b \rangle_Q = \frac{1}{2} (Q(a+b) - Q(a) - Q(b))$. Doing so with a = R - P and b = S - R gives (dropping henceforth the subscript Q from the notations)

$$\langle R - P, S - R \rangle = \frac{1}{2} \left(||(R - P) + (S - R)||^2 - ||R - P||^2 - ||S - R||^2 \right)$$

= $\frac{1}{2} \left(||S - P||^2 - ||R - P||^2 - ||S - R||^2 \right)$
= $\frac{1}{2} \left((||S - R|| - ||R - P||)^2 - ||R - P||^2 - ||S - R||^2 \right)$
= $-||S - R|| ||R - P||,$

using the assumption $P \in S$ in the third step. By taking absolute values we get the desired equality.

So now we know that P must at least belong to the line passing through R and S, which means that we can write P = R + t(S - R) for some real number $t \in \mathbb{R}$. The condition $d_Q(R, P) + d_Q(P, S) = d_Q(R, S)$ tells us that

$$(|t| + |1 - t|)||R - S|| = ||R - S||$$

and hence |t| + |1 - t| = 1. This forces $t \in [0, 1]$ and finishes the argument. Interestingly enough we have in the end reduced the original problem to the problem of showing $|t| + |1 - t| = 1 \Rightarrow t \in [0, 1]$, which is the one-dimensional analogue of the exercise. Notice that we have also provided the solution for the first part of Exercise 2, because the proof works for all inner products. 6. Let u be a nonzero vector. Take any vector $x \notin \mathbb{R}u$. We have seen in our second proof of the Cauchy-Schwarz inequality (in part 3) that the vector $v := x - \operatorname{Proj}_u(x)$ is not zero and orthogonal to u. Since u and v are orthogonal and both nonzero they are linearly independent and therefore they must span \mathbb{R}^2 . We can give a formula for the numbers λ and μ since if $w = \lambda u + \mu v$ then

$$\langle u, w \rangle = \langle u, \lambda u + \mu v \rangle = \lambda ||u||^2 + \mu \langle u, v \rangle = \lambda ||u||^2$$

and so $\lambda = \frac{\langle u, w \rangle}{||u||^2}$ and similarly $\mu = \frac{\langle v, w \rangle}{||v||^2}$. Thus, we see that the decomposition of w is given by $w = \operatorname{Proj}_u(w) + \operatorname{Proj}_v(w)$.