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Solutions série 3

Exercice 3. (Theoreme de l’hypothenuse) Soient P 6= Q deux points et C let cercle
de centre le milieu de [PQ] et de rayon d(P,Q)/2. Montrer que pour tout point R ∈ C
le triangle [PQR] est rectangle en R.

Solution 3. We will denote by M the midpoint of the segment [PQ]. We want to

show that 〈 ~RP , ~RQ〉 = 0. We have ~RP = ~MR + ~PM and ~RQ = ~RM + ~MQ and
therefore

〈 ~RP , ~RQ〉 = 〈 ~MR + ~PM, ~RM + ~MQ〉
= 〈 ~MR, ~RM〉+ 〈 ~MR, ~MQ〉+ 〈 ~PM, ~RM〉+ 〈 ~PM, ~MQ〉
= −|| ~MR||2 + 〈 ~MR, ~MQ〉+ 〈 ~PM, ~RM〉+ || ~PM ||2,

using that ~PM = ~MQ. Since the vector ~MR has the same norm as ~PM we obtain

〈 ~RP , ~RQ〉 = 〈 ~MR, ~MQ〉 − 〈 ~PM, ~MR〉
= 〈 ~MR, ~MQ− ~PM〉 = 0

= 〈 ~MR,~0〉 = 0,

as desired.

Exercice 5. Soient ~u,~v ∈ R2 deux vecteurs non-nuls et orthogonaux (〈~u,~v〉 = 0).

On a vu que tout vecteur ~w s’ecrit de maniere unique sous la forme

~w = α~u+ β~v, α, β ∈ R

avec des expression explicites pour α et β.

1. Soit Proj~v : R2 7→ R2 l’application

Proj~v : ~w 7→ 〈~w,~v〉
‖~v‖2

~v.

Montrer que Proj~v est lineaire : ∀λ ∈ R, ~w, ~w′ ∈ R2

Proj~v(λ.~w + ~w′) = λ.Proj~v(~w) + Proj~v(~w
′).

calculer son image et son noyau. Calculer Proj~v ◦Proj~v.



2. Montrer que Proj~v ne depend en fait que de la droite (~v) = R.~v et non du vec-
teur (non-nul) ~v contenu dans cette droite. On appelle-t-on Proj~v la projection
orthogonale sur la droite (~v), pourquoi ?

3. Soit sym~u : R2 7→ R2, l’application

sym~u : ~w 7→ ~w − 2.Proj~v(~w).

4. Montrer que sym~u est une isometrie lineaire et calculer

sym~v ◦ sym~v = IdR2 .

5. Montrer que sym~u ne depend en fait que de la droite (~u) = R.~u et non du
vecteur (non-nul) ~u contenu dans cette droite. On appelle-t-on sym~v la symetrie
orthogonale par rapport a l’axe (~u), pourquoi ?

Solution 5. For the ease of typing we will drop the arrow from the notation ~v and
just write v.

1. We omit the proof that Projv is linear. To show that Projv ◦Projv = Projv we
take an arbitrary x ∈ R2 and calculate

||v||2 Projv(Projv(x)) = 〈Projv(x), v〉v

=

〈
〈x, v〉
||v||2

v, v

〉
v = 〈x, v〉v.

Now we divide by ||v||2 to obtain the result. As for the kernel, note that for any
x ∈ R2 we have

Projv(x) = 0 ⇔ 〈x, v〉
||v||2

v = 0 ⇔ 〈x, v〉 = 0,

since v 6= 0. This shows that the kernel of Projv is the subspace {x ∈ R2 :
〈x, v〉 = 0} which is sometimes denoted (Rv)⊥ and called the orthogonal com-
plement of v. It is clear that the image of Projv is contained in the line Rv. The
identity Projv(tv) = tv, which holds for all t ∈ R, shows that reverse inclusion
also holds, hence Projv(R2) = Rv.

2. What we need to show is this : For all t ∈ R we have Projtv = Projv. To prove
this, we take any x ∈ R2 and compute

Projtv(x) =
1

||tv||2
〈x, tv〉tv =

t2

t2||v||2
〈x, v〉v = Projv(x).

3. Nothing was asked here.



4. The map symv is a linear combination of linear maps (by part 1), hence li-
near. Therefore, to show that symu is an isometry, it suffices to verify that
|| symv(x)|| = ||x|| for all x ∈ R2 1 . We use the identity ||a − b||2 = ||a||2 −
2〈a, b〉+ ||b||2 with a = x and b = 2 Projv(x) and expand

|| symu (x)||2 = ||x||2 − 4〈x, 〈x, v〉
||v||2

v〉+ 4||〈x, v〉
||v||2

v||2

= ||x||2 − 4
〈x, v〉2

||v||2
+ 4
〈x, v〉2||v||2

||v||4
= ||x||2,

giving the desired equality by taking square roots. We now show that symv ◦ symv =
IdR2 . Abbreviate p = Projv, s = symv and 1 = IdR2 . Addition and composition
of linear maps in Hom(R2,R2) behave just like the usual addition and multipli-
cation of numbers – except that composition of maps is not commutative. This
justifies the following equalities of linear maps

s ◦ s = (1− 2p) ◦ (1− 2p) = 1− 2p− 2p+ 4p2 = 1− 4p+ 4p = 1,

where we used that p2 = p (and nothing more about p).

5. From part 2 it is clear that symv only depends on the line Rv because the
projection Projv only depends on the line Rv (and the identity map doesn’t
depend on any choices, of course). Geometrically, symv is the reflection along
the line orthogonal to v.

Exercice 6. Soit a, b, c ∈ R tels que ∆ = b2 − 4ac < 0 et a > 0. On definit le
polynome (homogene) de degre 2

Q(X, Y ) = aX2 + bXY + cY 2.

On obtient donc une fonction

Q :
R2 7→ R

~u = (x, y) 7→ Q(P ) = Q(x, y)

(ici un vecteur ~u du plan est repere par ces coordonnees dans la base canonique.) On
defini une application

〈·, ·〉Q : R2 × R2 → R.

par

〈~u,~v〉Q :=
1

4
(Q(~u+ ~v)−Q(~u− ~v)).

1. Que vaut 〈~u, ~u〉Q ?

1. because then we have d(symv(x), symv(y)) = || symv(x) − symv(y)|| = || symv(x − y)|| =
||x− y|| = d(x, y) for all x, y ∈ R2.



2. Montrer que 〈·, ·〉Q est un produit scalaire (defini-positif) sur R2. On pose alors

‖ · ‖Q : ~u ∈ R2 7→ 〈~u, ~u〉1/2Q

et
dQ(·, ·) : (R, S) ∈ R2 × R2 7→ ‖ ~RS‖Q.

3. Montrer que inegalite de Cauchy-Schwarz est vraie :

∀~u,~v ∈ R2, |〈~u,~v〉Q| 6 ‖~u‖Q‖~v‖Q

avec egalite si et seulement si ~u et ~v sont proportionnels.

4. Montrer que dQ definit une distance sur R2. Si a = b = c = 1 dessiner la boule
unite B(0, 1)Q.

5. Dans le cas general, etant donne deux points R, S, on definit le ”segment”
relativement a la distance dQ par

[R, S]Q = {T ∈ R2| dQ(R, T ) + dQ(T, S) = dQ(R, S)}.

Quelle est la forme de ce Q-segment ?

6. Montrer que pour tout ~u 6= ~0, il existe ~v 6= 0 tel que 〈~u,~v〉Q = 0 (on dira que
~u,~v sont orthogonaux pour le produit scalaire 〈·, ·〉Q. Montrer qu’alors pour tout
~w ∈ R2 il existe λ, µ ∈ R tels que

~w = λ~u+ µ~v

et calculer λ, µ en fonction du produit scalaire 〈·, ·〉Q.

Solution 6. We omit the decorating arrow in the notation for a vector.

1. It follows immediately from the definitions that Q(tv) = t2Q(v) for all t ∈ R
and all v ∈ R2 and it is also clear that Q(0) = 0. Therefore we have

〈u, u〉Q = 1
4

(Q(u+ u)−Q(u− u)) = 1
4

(Q(2u)−Q(0))

= 1
4
(4Q(u)) = Q(u).

2. To prove that 〈·, ·〉Q is symmetric and bilinear, we express for general u1 =(
x1
y1

)
, u2 =

(
x2
y2

)
∈ R2 the inner product

〈u1, u2〉Q =
1

4

(
Q(

(
x1 + x2
y1 + y2

)
)−Q(

(
x1 − x2
y1 − y2

)
)

)
=

1

4
(a(x1 + x2)

2 + (x1 + x2)(y1 + y2) + c(y1 + y2)
2

− a(x1 − x2)2 − b(x1 − x2)(y1 − y2)− c(y1 − y2)2)

= ax1x2 +
b

2
(x1y2 + x2y1) + cy1y2.



This makes it clear that 〈u1, u2〉Q = 〈u2, u1〉Q and the bilinearity now follows
from

〈u1 + tu′1, u2〉Q = a(x1 + tx′1)x2 +
b

2
((x1 + tx′1)y2 + x2(y1 + ty′1)) + c(y1 + ty′1)y2

= ax1x2 +
b

2
(x1y2 + x2y1) + cy1y2

t(ax′1x2 +
b

2
(x′1y2 + x2y

′
1) + cy′1y2)

= 〈u1, u2〉Q + t〈u′1, u2〉Q.

To show that 〈, 〉Q is positive definite we complete the square in the definition
of Q and write

Q(x, y) = ax2 + bxy + cy2

= a(x2 + b
a
yx) + cy2

= a(x+ b
2a
y)2 − a( b

2a
y)2 + cy2

= a(x+ b
2a
y)2 + (c− b2

4a
)y2

= a(x+ b
2a
y)2 + (4ac−b

2

4a
)y2.

Since we are assuming that a > 0 and 4ac− b2 > 0, we always have Q(x, y) > 0.
Suppose that Q(x, y) = 0, then we must have

a(x+ b
2a
y)2 = 0 and (4ac−b

2

4a
)y2 = 0

This implies that y = 0 and then x = 0 (again because a > 0 and 4ac− b2 > 0).

3. The proof of the Cauchy-Schwarz inequality given in the lecture works for all
inner products : One considers the non-negative polynomial function P (t) =
||tu+ v||2Q of one real variable t ∈ R and and deduces from fact that its discri-
minant has to be 6 0 the Cauchy-Schwarz inequality. (The discriminant can’t
be > 0 because otherwise P would have two distinct real roots and thus would
assume strictly negative values as well).

We give a second proof using orthogonal projections. These can be defined
for all inner products on R2, in particular for 〈·, ·〉Q. When proving |〈u, v〉Q| 6
||u||Q||v||Q we can assume that v 6= 0 (because for v = 0, the inequality becomes
0 6 0). Think of v as being fixed. We write an arbitrary u as a sum of its
orthogonal projection onto Rv and an other vector :

u = Projv(u) + (u− Projv(u)).

A small computation shows that 〈v, u−Projv(u)〉 = 0, implying 〈Projv(u), u−
Projv(u)〉 = 0. We may think of u− Projv(u) as the orthogonal projection of u
onto a line orthogonal to the line Rv. Using this orthogonality we get

||u||2Q = ||Projv(u)||2Q + ||u− Projv(u)||2Q.



Now we just use that ||u− Projv(u)||2Q > 0 and obtain

||u||2Q > ||Projv(u)||2Q =
〈u, v〉2

||v||4Q
||v||2Q,

which rearranges to give the Cauchy-Schwarz inequality. Furthermore, if the
vectors are not proportional, then u does not belong to the line Rv, which
we proved is the image of Projv. In particular, u 6= Projv(u) and so ||u −
Projv(u)||2Q > 0 and we see that the inequality becomes strict.

4. In general, given A,B > 0 we know how the set {(x, y) ∈ R2 : Ax2 + By2 6
1} looks like : it is a filled ellipse with center at the origin, intersecting the
coordinate axes at the points (±A−1/2, 0) and (0,±B−1/2). We can reduce the
general case to this case by finding a linear map ϕ : R2 → R2 such that the
quadratic from (Q ◦ ϕ)(x, y) has no mixed terms xy. We can take the map
ϕ(x, y) := (x− y, x+ y), because

Q(x− y, x+ y) = (x− y)2 + (x− y)(x+ y) + (x+ y)2 = 3x2 + y2.

In principle one can find a suitable ϕ by writing down a general linear map
ϕ(x, y) = (αx + βy, γx + δy) with α, β, γ, δ ∈ R to obtain a condition on
α, β, γ, δ. (A more enlightening method will be taught in linear algebra at some
point). Define

E := {(x, y) ∈ R2 : 3x2 + y2 6 1}
B := {(x, y) ∈ R2 : Q(x, y) = x2 + xy + y2 6 1}

By definition, we have ϕ(E) = B. So we only need to figure out what the linear
map ϕ does geometrically. We can write ϕ(v) =

√
2ψ(v), where ψ(v) = 1√

2
ϕ(v).

Then ψ takes the standard orthonormal basis of R2 to the orthonormal basis(1/√2
1/
√
2

)
,
(−1/√2

1/
√
2

)
of R2 and we see that ψ is a counter-clockwise rotation with

angle π/2. The map ϕ is therefore a rotation, followed by a scaling with factor√
2 and we see that B is a filled ellipse centered at the origin, intersecting its

axes R
(1/√2
1/
√
2

)
and R

(−1/√2
1/
√
2

)
at distances

√
2√
3

and
√

2 respectively.



5. Define S := {R + t(S −R) : t ∈ [0, 1]}. We claim that

[R, S]Q = S.

The containment S ⊆ [R, S]Q holds because for any t ∈ [0, 1] we have

dQ(R,R + t(S −R)) + dQ(R + t(S −R), S) =

= ||R + t(S −R)−R||Q + ||S − (R + t(S −R))||Q
= t||S −R||Q + (1− t)||S −R||Q
= ||S −R||Q = dQ(R, S).

Notice that we have used here that t ∈ [0, 1] when pulling the scalar 1 − t out
of the norm. Now let P ∈ [R, S]Q. We want to show that P ∈ S.

We first try to show that P belongs to line passing through R and S. To do
that, we have to show that P −R is proportional to S −R, i.e. that

|〈P −R, S −R〉Q| = ||P −R||Q||S −R||Q,

using the Cauchy Schwarz inequality theorem. We have information about dis-
tances and not inner products. So to bring distances back into the argument
we could try to use the formula 〈a, b〉Q = 1

2
(Q(a+ b)−Q(a)−Q(b)). Doing so

with a = R−P and b = S−R gives (dropping henceforth the subscript Q from
the notations)

〈R− P, S −R〉 =
1

2

(
||(R− P ) + (S −R)||2 − ||R− P ||2 − ||S −R||2

)
=

1

2

(
||S − P ||2 − ||R− P ||2 − ||S −R||2

)
=

1

2

(
(||S −R|| − ||R− P ||)2 − ||R− P ||2 − ||S −R||2

)
= −||S −R|| ||R− P ||,

using the assumption P ∈ S in the third step. By taking absolute values we get
the desired equality.

So now we know that P must at least belong to the the line passing through R
and S, which means that we can write P = R+ t(S −R) for some real number
t ∈ R. The condition dQ(R,P ) + dQ(P, S) = dQ(R, S) tells us that

(|t|+ |1− t|)||R− S|| = ||R− S||

and hence |t|+ |1− t| = 1. This forces t ∈ [0, 1] and finishes the argument.

Interestingly enough we have in the end reduced the original problem to the
problem of showing |t| + |1 − t| = 1 ⇒ t ∈ [0, 1], which is the one-dimensional
analogue of the exercise. Notice that we have also provided the solution for the
first part of Exercise 2, because the proof works for all inner products.



6. Let u be a nonzero vector. Take any vector x /∈ Ru. We have seen in our
second proof of the Cauchy-Schwarz inequality (in part 3) that the vector v :=
x−Proju(x) is not zero and orthogonal to u. Since u and v are orthogonal and
both nonzero they are linearly independent and therefore they must span R2.
We can give a formula for the numbers λ and µ since if w = λu+ µv then

〈u,w〉 = 〈u, λu+ µv〉 = λ||u||2 + µ〈u, v〉 = λ||u||2

and so λ = 〈u,w〉
||u||2 and similarly µ = 〈v,w〉

||v||2 . Thus, we see that the decomposition

of w is given by w = Proju(w) + Projv(w).


