
QUANTUM PHYSICS III
Solutions to Problem Set 6 26 October 2018

1. The one-turning point problem

In the classically forbidden region x < x0, the modulus of the momentum p =
√

2m(E − V) is estimated as

|p| ∼ |(x − x0)
1
2 | = −i(x − x0)

1
2 . (1)

Switching to the polar coordinates,

Re (x − x0) = r cos φ , Im (x − x0) = r sin φ , (2)

we rewrite (1) as
|p| ∼ ei 3π

2 R
1
2 ei π2 . (3)

Now we continue this expression to the right side from the turning point, the classically
allowed region x > x0. This is done by changing the phase of the point at which p is
evaluated from π to either 0 or 2π :

ei 3π
2 R

1
2 ei π2 → ei 3π

2 R
1
2 e0 = −i(x − x0)

1
2 , (4)

and
ei 3π

2 R
1
2 ei π2 → ei 3π

2 R
1
2 eiπ = +i(x − x0)

1
2 . (5)

So, bypassing the turning point clockwise (eq. (4)), amounts to replacing |p| → −ip, and
bypassing the counterclockwise (eq. (5)), we replace |p| → +ip. Hence, continuation of
the WKB wave function

ψ(x)x<x0 =
C

2
√
|p(x)|

e−
1
~

∫ x0
x |p(x′)|dx′ (6)

gives us two terms,

C

2
√

p(x)
e−

i
~

∫ x
x0

p(x′)dx′+ π
4 ,

C

2
√

p(x)
e

i
~

∫ x
x0

p(x′)dx′− π4 , (7)

summing which, we have

ψ(x)x>x0 =
C√
p(x)

cos
(
1
~

∫ x

x0

p(x′)dx′ −
π

4

)
. (8)
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2. Quantization rule in a half-space

1. Let x = x0 > 0 be the turning point of the semiclassical wave function. Continuing
from the classically forbidden region x > x0, we have at 0 < x < x0,

ψx<x0(x) =
C
√

p
cos

(
1
~

∫ x0

x
pdx −

π

4

)
. (9)

Since the potential is regular at all x > 0, the LO WKB approximation stays valid
arbitrarily close to zero. Then, the boundary condition ψ(0) = 0 implies that ψx<x0

must approach zero as x→ 0+. Hence, eq. (9) must admit the form

ψx<x0(x) =
C′
√

p
cos

(
1
~

∫ x

0
pdx −

π

2

)
. (10)

One can rewrite the argument of the last cosine as

−

(
1
~

∫ x0

x
pdx −

1
~

∫ x0

0
pdx +

π

2

)
. (11)

Comparing this with eq. (9), we deduce the condition

−
1
~

∫ x0

0
pdx +

π

2
= −

π

4
+ πn , (12)

or ∫ x0

0
pdx = π~

(
n +

3
4

)
, n = 0, 1, 2, ... (13)

2. Using the quantization condition (13), we have∫ x0

0

√
2m(E − V0 − kx) dx =

√
2m
k

(E − V0)3/2
∫ x0

0

√
1 − y dy

=
2
3

√
2m
k

(E − V0)3/2 = π~

(
n +

3
4

)
.

(14)

Hence,

En = V0 +

(
3k

2
√

2m
π~

(
n +

3
4

))2/3

, (15)

where m = mc/2 is a reduced mass of the two-quark system. Numerically,

En ≈ 1.42 · n2/3 GeV. (16)
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3. WKB spectrum of the Harmonic oscillator

1. Let ±x0 be the turning points of the WKB wave function in the potential

V(x) =
1
2

mω2x2 . (17)

We have to compute the integral∫ x0

−x0

pdx =

∫ x0

−x0

√
2m

(
E −

1
2

mω2x2

)
dx =

√
2mE

∫ x0

−x0

√
1 −

x2

x2
0

dx

=2
√

2mE
∫ x0

0

√
1 −

x2

x2
0

dx .

(18)

At this point, it is convenient to change the variables,

x = x0 sin φ , dx = x0 cos φ dφ . (19)

The integral becomes,∫ x0

−x0

pdx =2
√

2mE
∫ π/2

0
x0 cos φ

√
1 − sin2 φ dφ

=2
√

2mEx0

∫ π/2

0
cos2 φ dφ

=2
√

2mE

√
2E

mω2

π

4
=
πE
ω

.

(20)

Thus,

En = ~ω

(
n +

1
2

)
. (21)

We conclude that the LO WKB approach gives us the exact energy levels of the har-
monic oscillator. This somewhat surprising fact is not unique to the potential (17).
Later we will consider one more example of an integrable system whose energy
levels are captured exactly by the LO approximation.

2. Here it is convenient to write the LO WKB applicability condition, |n′| � 1, in the
form (see the lectures)

V ′2 �
~
√

m
V ′′3/2 . (22)

Applying this to (17) gives

m2ω4x2
0 � ~ω

3m ⇒ mω2x2
0 � ~ω . (23)

In other words,
E � ~ω , (24)

or n � 1, as expected. As a general remark, we note that although the applicability
condition urges us not to trust the results of the WKB approach at small n, even for
them the answer can, in fact, be surprisingly accurate (or even exact).
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4. WKB spectrum in power-like potential

1. For the potential V(x) = V0

∣∣∣∣ x
x0

∣∣∣∣α, the integral to be calculated is

∫ x0

−x0

p dx =
√

2m
∫ x0

−x0

√
E − V0

∣∣∣∣∣ x
x0

∣∣∣∣∣α dx = 2
√

2mE
∫ x0

0

√
1 −

V0

E

∣∣∣∣∣ x
x0

∣∣∣∣∣α dx

=2
√

2mV−
1
α

0 x0E
1
2 + 1

α

∫ 1

0

√
1 − yα dy

=aE
1
2 + 1

α ,

(25)

where

a =
√

2mπV−
1
α

0 x0
Γ(1 + 1

α
)

Γ(3
2 + 1

α
)
. (26)

Then, the Bohr-Sommerfeld quantization condition gives

En =

[
π~

a

(
n +

1
2

)] 1
1
2 + 1

α

. (27)

When α = 2, a becomes equal π
√m

2
x0√
V0

, and

En =
π~
√

2m

√
V0

x0

(
n +

1
2

)
. (28)

One can express this through the frequency ω of the harmonic oscillator,
√

V0

x0
=

√
m
2
ω , (29)

and we restore the expression (21).

2. From eq. (27) we see that at large n, the dependence of the energy of the bound
state on its number becomes

E ∼ nβ(α) , β(α) =
1

1
2 + 1

α

. (30)

The function β(α) is shown on figure 1. Note first that the difference between the
adjacent energy levels,

En

En−1
∼

( n
n − 1

)β
≈ 1 +

β

n
, (31)

goes to zero as α approaches zero. Hence, the flatter the potential, the denser the
energy levels. In the opposite limit, α → ∞, we have β → 2. This is fully expected
once we notice that the limit of infinite α turns the potential into a box with two
infinite walls located at x = ±x0 (see figure 2), and the energy levels of a particle in
this box are proportional to n2.
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Figure 1 – The exponent of the energy of the bound state β plotted against the exponent
of the potential α.
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Figure 2 – The potentials V = V0|x/x0|
α for increasing values of α.

5. The multifold one-turning point problem

Here we use the method of bypassing the turning point in the complex plane. In the
classically forbidden region x > 0, the dependence of the momentum p on the coordinate
x is of the form

|p| ∼ xk+ 1
2 . (32)

We switch to the polar coordinates as in Problem 1 and rewrite the momentum as

|p| ∼ Rk+ 1
2 e0 . (33)

Now we continue this expression to the region x < 0 by changing the phase of the point
from 0 to π or to −π. This gives

Rk+ 1
2 e0 → Rk+ 1

2 eiπkei π2 or Rk+ 1
2 e0 → Rk+ 1

2 e−iπke−i π2 . (34)

Hence,
|p| → (−1)kip or |p| → (−1)k+1ip . (35)

Applying these rules to the wave function

ψ(x)x>0 =
C

2
√
|p|

e−
1
~ |

∫ x
0 p dx| , (36)

we get two contributions

C
2
√

p
e

i
~

∫ 0
x p dx·(−1)k− iπk

2 −
iπ
4 ,

C
2
√

p
e−

i
~

∫ 0
x p dx·(−1)k+ iπk

2 + iπ
4 , (37)
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and the answer is

ψx<0(x) =
C
√

p
cos

(
(−1)k

~

∫ 0

x
p dx −

π

4
−
πk
2

)
. (38)

Note that this expression matches with the general LO WKB solution in the allowed
region. Note also that such matching is impossible unless k is an integer. The reason lies
in the fact that if we promote the multiplicity of the turning point 2k + 1 to an arbitrary
real positive number, we loose analyticity around that point, and this makes the method
used here inapplicable. In that case, it remains to solve the Schroedinger equation directly
near the turning point as was done in Problem 5 of Problem set 5.

6∗. Quantization rule beyond the LO

The solution will appear later.
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