

CS-411 : Digital Education & Learning Analytics

Chapter 10:

Learning Modeling

Pierre Dillenbourg and Patrick Jerman

$$5^2 = ?$$

From the learner's behaviour, infer his/her knowledge state

Cognitive Diagnosis

5 ² = ??	Knowledge States										
					$\mathbf{x}^{n} = \mathbf{x} \cdot \mathbf{x}$						
Behavior			24		but bad						Normalized
(Answer)	$5^2 = 25$	5 ⁿ =	$n^2 = n \cdot N$	x ⁿ = x . x	mult.	$\mathbf{x}^{n} = \mathbf{x}.\mathbf{n}$	$\mathbf{x}^{n} = \mathbf{x} + \mathbf{n}$	x ⁿ = ???	Sum	Entropy	entropy
25	0.10	0.20	0.30	0.40	0.00	0.00	0.00	0.00	1	1.89	0.63
35	0.00	0.00	0.00	0.00	0.40	0.10	0.00	0.50	1	1.41	0.47
10	0.00	0.00	0.00	0.00	0.00	0.79	0.00	0.20	1	0.79	0.26
27	0.00	0.00	0.00	0.00	0.40	0.00	0.00	0.59	1	1.03	0.34
7	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.40	1	1.03	0.34
											0.41

Diagnosis Power

5² =

p (knows X²)= 1 ?

From the learner's behaviour, infer his/her knowledge state

p (state = knows I correct-answer) = 1 - Guess p (state = knows I incorrect-answer) = 0 + Slip

Factors that depend upon the response modality

Bayesian Knowledge Tracing, Corbezt & Anderson

5 ² = ??		Knowledge States									
					$\mathbf{x}^{n} = \mathbf{x} \cdot \mathbf{x}$						
Behavior					but bad						Normalized
(Answer)	$5^2 = 25$	5 ⁿ =	n ² = n . N	$\mathbf{x}^{n} = \mathbf{x} \cdot \mathbf{x} \cdot \mathbf{x}$	nult.	$\mathbf{x}^{n} = \mathbf{x}.\mathbf{n}$	$\mathbf{x}^{n} = \mathbf{x} + \mathbf{n}$	x ⁿ = ???	Sum	Entropy	entropy
25	0.10	0.20	0.30	0.40	000	0.00	0.00	0.00	1	1.89	0.63
35	0.00	0.00	0.00	0.00	L 40	0.10	0.00	0.50	1	1.41	0.47
10	0.00	0.00	0.00	0.00	0.00	0.79	0.00	0.20	1	0.79	0.26
27	0.00	0.00	0.00	.00	0.40	0.00	0.00	0.59	1	1.03	0.34
7	0.00	0.00	0.00	0.00	0.00	0.00	0.59	0.40	1	1.03	0.34
											0.41

5 ² = ??		Knowledge States (with SLIP/GUESS factors)									
					$\mathbf{x}^{n} = \mathbf{x} \cdot \mathbf{x}$						
Behavior					but bad						Normalized
(Answer)	$5^2 = 25$	5 ⁿ =	n ² = n.n	x ⁿ = x . x	mult.	$\mathbf{x}^{n} = \mathbf{x}.\mathbf{n}$	$x^n = x + n$	x ⁿ = ???	Sum	Entropy	entropy
25	0.05	0.15	0.25	0.35	0.05	0.05	0.05	0.05	1	2.53	0.84
35	0.05	0.05	0.05	0.05	0.34	0.05	0.00	0.41	1	2.16	0.72
10	0.05	0.05	0.05	0.05	0.00	0.64	0.00	0.15	1	1.72	0.57
27	0.05	0.05	0.05	0.05	0.25	0.00	0.00	0.54	1	1.87	0.62
7	0.05	0.05	0.05	0.05	0.00	0.00	0.50	0.30	1	1.92	0.64
											0.68

From the learner's behaviours, infer his/her knowledge state

b(s) = watch video with many pauses

b(s) = select correct definition of SD in a quiz with 5 possible definitions

b(s) = post a message "There is a mistake on the slide" (and there is one indeed) X(S)={lost, active, fine, brilliant}

State "fine": the learner is performing well State "active": the learner is working but does not seem to succeed well State "lost": the learner does not understand at all or did not complete the activities State "drop": the learned has dropped out (e.g. no login since N days)

The uncertainty of the diagnosis can be estimated by Shannon's entropy applied to the vector fo probabilities for the different states.

Since this value depends upon the number of states, we normalize it on a 0->1 scale by dividing it by the maximal entropy which \log_2 of the number of states

The diagnosis power of a question can be measured by the entropy of the diagnosis vector

Which question has the highest diagnosis power?

Question 1

The standard deviation of a distribution if theof the sum of from the mean

Question 2

Remove two numbers from this distribution to minimize it's standard deviation : [1 3 3 5 9 9 9 10 11 18 19 25 29]

Basic approach to reduce uncertainty

Decrease uncertainty by collecting multiple answers

5 ² = ??			Knowledge	States (wit	h SLIP/GUE	SS factors)					
Behavior (Answer)	5 ² = 25	5 ⁿ =	n ² = n.n	x ⁿ = x.x	x ⁿ = x . x but bad mult.	x ⁿ =x.n	$\mathbf{x}^{n} = \mathbf{x} + \mathbf{n}$	x ⁿ = ???	Sum	Entropy	Normalized entropy
25	0.05	0.15	0.25	0.35	0.05	0.05	0.05	0.05	1	2.53	0.84
35	0.05	0.05	0.05	0.05	0.34	0.05	0.00	0.41	1	2.16	0.72
10	0.05	0.05	0.05	0.05	0.00	0.64	0.00	0.15	1	1.72	0.57
27	0.05	0.05	0.05	0.05	0.25	0.00	0.00	0.54	1	1.87	0.62
7	0.05	0.05	0.05	0.05	0.00	0.00	0.50	0.30	1	1.92	0.64
									e		0.68
7 ² = ??		_	Knowle	edge States	(second qu	estion)	وربي				
Behavior (Answer)	7 ² = 25	7 ⁿ =	n ² = n.n	x ⁿ = x.x	x ⁿ = x . x but bad mult.	x ⁿ =x.n	$x^n = x + n$	x ⁿ = ???	Sum	Entropy	Normalized entropy
49	0.02	0.10	0.35	0.45	0.02	0.02	0.02	0.02	1.00	1.95	0.65
56	0.02	0.02	0.02	0.02	0.61	0.00	0.00	0.31	1.00	1.43	0.48
14	0.02	0.02	0.02	0.02	0.00	0.82	0.00	0.10	1.00	1.04	0.35
72	0.02	0.02	0.02	0.02	0.32	0.00	0.00	0.60	1.00	1.44	0.48
9	0.02	0.02	0.02	0.02	0.00	0.00	0.72	0.20	1.00	1.27	0.42
											0.48
3 ³ = ??			Knowle	edge States	(second qu	estion)					
Behavior (Answer)	3 ³ = 25	3 ⁿ =	n ³ = n.n.n	x ⁿ = x.x	x ⁿ = x . x but bad mult.	x ⁿ =x.n	$x^n = x + n$	x ⁿ = ???	Sum	Entropy	Normalized entropy
49	0.01	0.10	0.20	0.65	0.01	0.01	0.01	0.01	1.00	1.53	0.51
26	0.01	0.01	0.01	0.01	0.81	0.00	0.00	0.15	1.00	0.94	0.31
9	0.01	0.01	0.01	0.01	0.00	0.82	0.00	0.14	1.00	0.92	0.31
33	0.01	0.01	0.01	0.01	0.12	0.00	0.00	0.84	1.00	0.86	0.29
6	0.01	0.01	0.01	0.01	0.00	0.00	0.91	0.05	1.00	0.63	0.21
A											0.33

How does the teacher/system chooses the next question ?

• Because it will maximize the learning gain of the learner ?

• Because it will maximize the system knowledge about the learner ?

Exploration Exploitation Tradeoff

From the learner's behaviour, infer his/her knowledge state

Inference mechanisms

 \triangle (learner-knowledge, correct-knowledge) = f (\triangle (learner-answer, correct-answer))

Al approach to inference mechanisms:

If, when bringing perturbation X to an expert system, it produces the same mistake as the learner, X is a good hypothesis of what the learner did not understand

From the learner's behaviour, infer his/her knowledge state

+

From the learner's previous state, predict his/her knowledge state

From the learner's behaviour and his previous state, infer his/her knowledge state

Bayesian Knowledge Tracing

Predicting from transition matrix

From the learner's behaviour, infer his/her knowledge state

From the learner's behaviour, infer his/her learner's knowledge state

From the learner's behaviour, infer his/her knowledge state

Relevant Behavioral Abstractions (Features)

Computational Models Education Research

Relevant Behavioral Abstractions (Features)

gaze(a) = f(gaze(b))

Eye Tracking

(a)

(c)

Tobii 1750

The (raw) eyetracking data

Timestamp [ms]	Category	Pupil size R [mm]	Pupil size L [mm]	Point of regard X	Point of regard Y	
87542.5	Blink	3	2.9	936.3	691.7	
87575.7	Blink	3	2.8	908.6	639.5	
87609.2	Visual Intake	3	2.9	873.7	613.7	
87642.5	Visual Intake	3	2.9	851.3	608.9	
87675.8	Visual Intake	3	3	828.5	603.1	
87709.2	Visual Intake	3	3	809.1	613.9	
87742.3	Visual Intake	3.1	3	794.1	618.1	
87775.6	Visual Intake	3.1	3.1	783.7	627.1	
87808.8	Visual Intake	3.2	3.1	771.4	633.7	
87842.1	Saccade	3.1	3.2	769.3	651.5	
87875.3	Saccade	3.2	3.2	767.7	671.3	
87908.6	Saccade	3.2	3.2	764	679.8	
87941.8	Visual Intake	3.2	3.2	759	686.1	
87975.3	Visual Intake	3.2	3.2	758.9	690.9	

...

...

DUET - Dual Eye-Tracking Pair programming experiment

Low gaze recurrence

P. Jermann, M.-A. Nüssli & P. Dillenbourg © CRAFT – <u>http://craft.epfl.ch/</u>

Supported by the Swiss National Science Foundation (grants #K-12K1-117909 and #PZ00P_126611)

DUET - Dual Eye-Tracking Pair programming experiment

High gaze recurrence

P. Jermann, M.-A. Nüssli & P. Dillenbourg © CRAFT – <u>http://craft.epfl.ch/</u>

Supported by the Swiss National Science Foundation (grants #K-12K1-117909 and #PZ00P_126611)

Relevant Behavioral Abstractions

gaze(listener)=f(gaze(speaker))

<u>Feature</u>: Gaze recurrence <u>Context</u>: Collaborative learning

Eye tracking experiment on MOOC Video

Following teacher's references

Gaze of students' watching Scala course by Prof. Martin Odersky (EPFL, Switzerland)

K. Sharma, P. Jermann, P. Dillenbourg @ CHILI – <u>http://chili.epfl.ch</u> Supported by the Swiss National Science Foundation (Grants CR1211_132996 and PZ00P2_126611)

Relevant Behavioral Abstractions gaze (learner) = f (reference (teacher))

"...they look like a bunch of little grains arranged together...typically a group of very small elements"

Sarah d'Angelo, Kshitij Sharma, Darren Gergle, Pierre Dillenbourg (2016)

Do finger-based or gaze-based deictics enhance learning ?

Sarah d'Angelo, Kshitij Sharma, Darren Gergle, Pierre Dillenbourg (2016)

Relevant Behavioral Abstractions

gaze (learner) = f (gaze (teacher))

<u>Feature</u>: 'Withmeness' <u>Context</u>: Lecturing

Modeling in the wild ?

 K_t

1	Kernel	Features	Score	Cohen's kappa
-	RBF(c=1.31, g=0.0211)	Distance, Head travel norm., Num. still periods	61.86%	0.30
	BF(c=1.21, g=0.11)	Period, Row, Head travel norm., Mean duration still	61.72%	0.32
R.	3F(c=1.11, g=0.061)	Head travel norm., Mean duration still	60.42%	0.28
Dt	$\beta F(c=1.4, g=0.04)$	Period, Distance, Row, Mean duration still	59.23%	0.30

Raca, Tormey & Dillenbourg

Relevant Behavioral Abstractions

gaze (learner) = f (location (teacher))

<u>Feature</u>: Head rotations <u>Context</u>: Lecturing

activity (teacher) = f (gaze (teacher))

L. Prieto, K. Sharma, L. Kidzinsky, P. Dillenbourg

Computational Modelling of Education

Relevant Behavioral Abstractions

activity(teacher) = f (location (teacher))

<u>Feature</u>: pupil diameter, #faces in field of view <u>Context</u>: Lecturing

Measured at time t

Stable in time

State ≠ Trait

- Knows •
- Understands
- Performs •
- Engaged
- Bored •

- Anxious / Self-confident •
- Risk-aversive / Risk-seeking •
- Aural / visual / kinesthetic
- Deep / Surface •
- Field-dependent / independent •

Learning styles

Severe criticisms:

- Contextual rather than personal
- No clear effects of adaptation
- Should education mimic style or counterbalance them ?
- Labels produce self-fulfilling prophecies
- •

BEWARE OF the medicalisation of Education !!!

- Learning disabilities, LD
- Attention-deficit disorder, ADD
- Attention-deficit hypeactivty disorder, ADHD
- Dysgraphia, dyscalculia, dyslexia,
- High-potential chidren, HP
-

Labels help Sales

Ethics of Algorithms !

- Social Determinism
- The 'halo effect'
- Biased data sets (over-representation of a subpopulation)
- Over-fitting
- •

Education raises challenges to data science

- Explainability : which features make sense
- Exploration/Exploitation trade-off
- Cold Start: simulations, expert's knowledge

Education is a computational science

EPFL Center for Learning Sciences