
QUANTUM PHYSICS III
Solutions to Problem Set 8 9 November 2018

1. Tunneling through a parabolic barrier

1. The transmission coefficient D is given by
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iπ
2 e−

1
~
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where ±x∗ are the turning points. Computation of the tunneling exponent is straight-
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where we used the relation 1 − (±x∗)2/x2
0 = E/V0. Finally,

D(E) = e
iπ
2 e−

x0
2~ (1−E/V0)π

√
2mV0 . (3)

2. The WKB approach reproduces well the value of the transmission coefficient pro-
vided that the tunneling exponent is large. Denoting δE = V0 −E, we have from eq.
(3),

δE �
~

x0

√
2V0

m
. (4)
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2. Symmetry restoration in the double-well potential

1. Let ψ0(x) be the low energy bound state wave function of the left well. Then, one
can build two eigenfunctions of the whole double-well potential as follows,

ψ1(x) =
1
√

2
(ψ0(x) + ψ0(−x)) , ψ2(x) =

1
√

2
(ψ0(x) − ψ0(−x)) . (5)

For the initial wave function of the particle in the left well we have

Φ(x, 0) = ψ0(x) =
1
√

2
(ψ1(x) + ψ2(x)) . (6)

Time evolving this wave packet, one finds

Φ(x, t) =
1
√

2
e−

i
~E1t(ψ1(x) + e−iδtψ2(x)) , δ =

E2 − E1

~
> 0 , (7)

where δ is the energy splitting between the states represented by ψ1(x) and ψ2(x).
The probability to detect the particle at the position x at the time t is then given by

P(x, t) = |ΦΦ∗| =
1
2

(ψ1(x)2 + ψ2(x)2 + 2ψ1(x)ψ2(x) cos δt) . (8)

2. The probability for the particle to be found in the right well at the time t can be
written as

P(t) =

∫ ∞

0
P(x, t) dx . (9)

We substitute eq. (8) into eq. (9), and note that integration of any term including the
function ψ0(x) gives zero, since this function is localized in the left well, and that∫ ∞

0
ψ0(−x)2dx = 1 , (10)

because of the normalization of the bound state wave function. Hence,

P(t) =
1
2

(
1
2

+
1
2
− 2 cos δt ·

1
2

)
= sin2 δt

2
. (11)

It remains to compute exactly the energy splitting δ,

δ =
~ω

π
exp

(
−

1
~

∫ x∗

−x∗
|p|dx

)
, (12)

where ±x∗ are the turning points of the subbarrier transition, and ω is the frequency
of the classical oscillations in the well. The expression (12) can be easily compu-
ted in the limit E � V0. Indeed, near the left well bottom the potential is well
approximated by a parabolic function,

V(y) = V0y2(y + 2x1)2 ≈ 4x2
1V0y2 , y = x − x1 , |y/x1| � 1 . (13)
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From here, the oscillation frequency is extracted as

V(y) =
1
2

mω2y2 ⇒ ω2 =
8x2

1V0

m
. (14)

Next, the integral in (12) is evaluated as follows,∫ x∗

−x∗
|p|dx ≈

√
2mV0

∫ x1

−x1

√
(x − x1)2(x + x1)2dx =

√
2mV0 ·

4
3

x3
1 . (15)

Thus,

δ =

√
8~2x2

1V0

mπ2 exp
(
−

4
3~

√
2mV0x3

1

)
. (16)

3. The average probability to detect the particle in the right well during the time T is
given by

1
T

∫ T

0
P(t) dt . (17)

Taking the limit T → ∞, we obtain

lim
T→∞

1
2T

∫ T

0
(1 − cos δt) dt =

1
2
−

1
2δ

lim
T→∞

sin δT
T

=
1
2
. (18)

So, indeed, we have the equal chance to find the particle in either well. In other
words, in the large time limit, the system forgets its initial state and exhibits a uni-
versal behaviour. In particlar, the parity symmetry of the potential, broken by the
initial distribution of the wave function, gets restored as the time passes by. Ba-
sically, this is the reason why in 1D quantum systems it is impossible to make a
spontaneous symmetry breaking.
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3. Pair production in electric field
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Fig. 1 – Effective potential

1. The effective potential of the problem is given by (see figure 1)

V(x) = 2mec2 − |e|Ex , x > 0 , V(x) = 0 , x 6 0 . (19)

One should compute the probability to tunnel from the vacuum state with E = 0
to the state containing one electron-positron pair in the electric field. As the energy
must be conserved, this state must also have zero energy. The tunneling probability
is then given by

P(E) = exp
(
−

2
~

∫ b

a
|p|dx

)
, (20)

where a = 0 and b = 2mec2

|e|E . Straightforward calculation gives∫ b

a
|p|dx =

∫ b

a

√
2me(2mec2 − |e|Ex) dx =

8m2
ec3

3|e|E
, (21)

and

P(E) = exp
(
−

16m2
ec3

3~|e|E

)
. (22)

The answer is correct parametrically (i.e., up to the coefficient of the order of one in
the exponent). The exact answer, obtained by the means of a more advanced tech-
nique of quantum field theory, yields a slightly different coefficient (π instead of
16/3) as well as some prefactor which cannot be caught in the LO WKB approxi-
mation.
The particle production becomes statistically significant when the argument of the
exponent in eq. (22) approaches 1. Numerically, this implies the magnitude of the
electric field

E ∼ 1012 V/cm . (23)

This is a huge value. Note also that the argument can be rewritten as

∼
mec2

|e|Eλe
, (24)
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with λe the Compton wave length of the electron. This clarifies the physical meaning
of the effect : the production of e+e− pairs becomes relevant, when the work done
by the electric field (|e|E) on the distance of the order of λe is comparable with the
rest energy of the pair. Of course, the semiclassical approach is not applicable in
this regime.

2. Strictly speaking, the e+e− pair production causes a back reaction on the electric
field creating them. Indeed, the created particles move towards the sources of the
field with the opposite charges, thus diminishing them. Although, when the effect is
weak enough (as it is for all reasonable magnitudes of the electric field), this back
reaction can be neglected, in an idealized situation, if one waits sufficiently long,
one should be able to trace it. As an example of such situation, consider the flat
vacuum capacitor with the parameters

Q = 10 nC , S = 10 cm2 , d = 1 cm . (25)

The initial electric field between the plates is given by

E0 =
Q
ε0S

, (26)

where ε0 is the absolute permittivity. First, one should estimate the frequency of pair
formation events in the volume V = S d between the plates. We write the average
time between two events as

∆t =
τ

n
. (27)

Here τ is the lifetime of the vacuum state at a given space position, and n is the num-
ber of elementary phase cells available in the volume V . The lifetime is estimated
as follows (note that the particles are created in the rest),

τ ∼
2π
ω

P−1(E) , ω =
mec2

~
, (28)

where P(E) is given in eq. (22). For n, we have

n ∼
S d
λ3

e
, λe =

~

mec
. (29)

Next, we note that the charge of the capacitor is decreased by |e| at the time ∆t. In
other words,

∆E

∆t
=

1
S

∆Q
∆t

=
|e|n
ε0S τ

. (30)

We now replace the finite differences in this equation by differentials and use eqs.
(22), (27)—(29) to obtain

dE(t)
dt

= Be−
A
E(t) , B =

|e|d
ε0

m4
ec5

~4 , A =
16
3~

m2
ec3

|e|
. (31)

This must be supplemented with the initial condition

E(0) = E0 . (32)
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Eq. (31) is elementary integrated. The time T , at which the magnitude of the electric
field is diminished by a factor 2, is given by

T =
A
B

∫ E0/A

E0/2A
e

1
y dy . (33)

Since the initial magnitude E0 ∼ 104 V/cm is much smaller than (23), the limits
of integration in (33) are very small, E0/A ∼ 10−8. At small y, the function e

1
y is

rapidly decreasing, and the value of the integral is evaluated at its lower limit. We
arrive at the final answer

T ∼
E0ε0

|e|d
~4

m4
ec5 P−1(E0) . (34)

4. Tunneling in a thermal bath

The quantum particle coupled to the classical thermal bath provides a good example of an
interplay of classical and quantum effects. Here, classical thermal fluctuations push the
particle to some excited state from which it then experiences quantum tunneling. On the
one hand, it is more difficult to push the particle to a higher energy level than to a lower
one. On the other hand, it is easier to tunnel from the higher energy level than from the
lower one. Hence, at a given temperature, there exists the most probable energy level from
which the particle escapes the well.

1. The probability P̃(E) to escape the well from the level of energy E is a product of
the probability to reach that level by a thermal fluctuation e−βE, and the probability
to tunnel through the barrier P(E). Integrating over E, we write the full probability
to escape the well as

P =

∫ Esph

0
dE e−βE−B(E) . (35)

Now we apply the saddle-point approximation by saying that the integral above is
saturated at the value of energy E = E∗, at which the expression in the exponent is
minimized,

P ≈ e−βE∗−B(E∗) . (36)

2. As the temperature increases, the thermal fluctuations become stronger and, even-
tually, the chance to jump over the barrier without tunneling becomes of the order
of one. From this temperature, E∗ = Esph, hence B(E∗) = 0 and

P ≈ e−βEsph . (37)

3. One should find the minimum of the function

βE + B(E) , (38)
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where

B(E) =
2
~

∫ x∗

−x∗

√
2m(V − E) dx

=
2
√

2m
~

∫ x∗

−x∗

√
Esph − Esph

∣∣∣∣∣ x
x0

∣∣∣∣∣ − E dx

=
8
√

2mx0(Esph − E)3/2

3Esph
.

(39)

βc
β
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Fig. 2 – The most probable tunneling energy plotted against the inverse temperature.

Solving the equation
d

dE
(βE + B(E))

∣∣∣∣∣
E=E∗

= 0 , (40)

we find

E∗ =

 Esph −

(
βEsph

4
√

2mx0

)2

, β < βc

0 , β > βc

(41)

with

βc =
4
√

2mx0

Esph
. (42)

Thus, at the temperatures smaller than β−1
c , the particle still prefers to tunnel from

the ground state. At T > β−1
c , the most probable energy rapidly increases and tends

to Esph in the limit T → ∞ (see figure 2). Note that in this limit the semiclassical
approximation breaks down, since the tunneling exponent becomes of the order of
one, and the behavior of the particle is governed by the classical statistical physics.
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