
QUANTUM PHYSICS III
Problem Set 9 17 November 2017

Reminders from classical scattering theory

1. Classical scattering on a Coulomb potential

Consider a constant flux of non-interacting particles (i.e. a constant number of n particles
per area and time) of mass m with fixed energy and direction approaching a central po-
tential U(r) (a scattering center).

1. Show that the orbit equation for each individual particle is given by (see figure 1)

φ(r) =

∫ r

∞

L/r′2dr′√
2m(E − U(r′)) − L2/r′2

, (1)

with E the energy and L the angular momentum. For the Coulomb potential U(r) =

α/r with α ∈ Reals and for E > 0 this is a scattering orbit (a hyperbola).

2. Use the previous equation to determine the deflection angle θ for a particle starting
at r = ∞ and going back to r = ∞.

Hint : Use the formula∫
dx

x
√

ax2 + bx + c
=

1
√
−c

arcsin
bx + 2c

x
√

b2 − 4ac
. (2)

3. Replace the constants of motion (E, L) by (E, b), with b the impact parameter, i.e.
the normal distance between the asymptote of the incident particle and the scattering
center at r = 0.
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Fig. 1 – The Coulomb potential

4. Determine the number of particles dN per area and per time in a ring between b and
b + db. If there is a one-to-one functional relation b(θ) between b and the scattering
angle, then dN is at the same time the number of particles that is scattered in an
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angle between θ and θ + dθ. Use this to show that the differential cross section for a
Coulomb scattering (i.e. the Rutherford scattering formula) is given by

dσ
dΩ

=
α2

16E2

1
sin4 θ

2

. (3)

5. Show that the total cross section is infinite. Interpret the result.

2. Differential cross section transformation

Consider a particle of mass m1 scattering off a target particle of mass m2 in the non-
relativistic limit.

1. Show that the relation between the differential cross section in the laboratory frame
at a given lab angle θLAB and the differential cross section in the center of mass
frame at the corresponding angle θCM can be written as

(
dσ
dΩ

)
LAB

=

(
1 + 2λ cos θCM + λ2

)3/2

|1 + λ cos θCM |

(
dσ
dΩ

)
CM

(4)

with λ = m1/m2 the mass ratio of the two particles.

Hint : Show that the relation between cos θLAB and cos θCM is given by

cos θLAB =
cos θCM + λ

(1 + 2λ cos θCM + λ2)1/2 . (5)

3. Interaction picture

Consider a system with the Hamiltonian Ĥ = Ĥ0 + V̂ , where Ĥ0 is the free Hamiltonian
and V̂ is the interaction. Define the interaction picture for states and operators via the
relations

ΨI(t) = Û†0(t)ΨS (t) ,

ÂI(t) = Û†0(t)ÂS Û0(t) ,
(6)

where Û0(t) = e
i
~ Ĥ0t, and the subscript S denotes quantities in the Schrodinger picture.

1. Find the relation between the states and operators in the interaction and Heisenberg
pictures.

2. Show that the evolution of the wave function in the interaction picture is described
by the interaction term V̂ in the same picture, i.e.

−
~

i
d
dt

ΨI(t) = V̂IΨI(t) . (7)
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3. Express the evolution operator in the interaction picture ÛI(t) through Û(t) and
Û0(t). Find a differential equation which ÛI(t) obeys and determine the initial condi-
tion for it.

4. Unitarity versus isometry

Recall that the operator Û acting in the Hilbert spaceH is called unitary if

D(Û) = H , R(Û) = H , Û†Û = 1 , (8)

where the last equality should be understood in the operator sense,

〈Φ|Û†Û |Φ〉 = 〈Φ|Φ〉 = 1 , ∀Φ ∈ H . (9)

1. Prove that the set of conditions (8) is equivalent to the following set,

D(Û) = H , Û†Û = 1 , ÛÛ† = 1 . (10)

2. Prove that ifH is finite-dimensional, the conditions (10) can be eased to

D(Û) = H , Û†Û = 1 . (11)

3. AssumingH to be infinite-dimensional and with the basis |1〉, |2〉, ..., |n〉,... , construct
the sequence of unitary operators Û(λ) such that limλ→0 Û(λ) = Ω̂, where Ω̂ is an
isometric non-unitary operator.
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