Boolean Methods for Multi-level Logic Synthesis

Giovanni De Micheli

Integrated Systems Centre
EPF Lausanne

L)
L\
nuLe
s Centre Sl
‘ “‘ ‘|‘ Integrated Systems Centre
L)

(g

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objectives
A What are Boolean methods

A How to compute don’t care conditions

v Controllability
v Observability

A Boolean transformations

(c) Giovanni De Micheli

Boolean methods

¢ Exploit Boolean properties of logic functions
Use don ’t care conditions

¢ More complex algorithms

A Potentially better solutions

A Harder to reverse the transformations

¢ Used within most synthesis tools

(c) Giovanni De Micheli

External don 't care conditions

Controllability don ’t care set CDC,,

Alnput patterns never produced by the environment at the
network’ s input

Observability don ’t care set ODC

Alnput patterns representing conditions when an output is not
observed by the environment

A Relative to each output

A Vector notation

(c) Giovanni De Micheli

Example

yi

[J—|

XNW3a

X3 NETWORK N1

s1 x4 z1

! o1
Y J— 22 N3 T:)i

e Inputs driven by a de-multiplexer.

o CDC(C;, = :1:'1:1:'2;17'3;17'4 +rizo+ 123+ 18+ 223+ T8 + T34,

e Outputs observed when [fl] =1
a

O DCout —_—

8

8

(c) Giovanni De Micheli

Overall external don 't care set

+Sum the controllability don ’t cares to each entry of the

observability don ’t care set vector

DC.;t = CDC;,,+0ODC, =

(c) Giovanni De Micheli

Internal don 't care conditions

)ﬁ

SUBNETWORK

NETWORK

(c) Giovanni De Micheli 7

Internal don 't care conditions

¢ Induced by the network structure

Controllability don ’t care conditions:

A Patterns never produced at the inputs of a sub-network

Observability don 't care conditions

A Patterns such that the outputs of a sub-network are not observed

(c) Giovanni De Michell 8

Example of optimization with don ’t cares

L
L

x=a'+b\ x=a’+b\
— —

y=abx+a’cx y=ax+ta'c

¢CDC of y includes ab’ x +a’ x’

¢ Minimize f, to obtain: g, =ax+a'c

(c) Giovanni De Micheli

Satisfiability don 't care conditions

¢ Invariant of the network:

x=f, > x#f, < SDC

‘SD C = Zallinternal nodes x El-) fX

¢ Useful to compute controllability don't cares

(c) Giovanni De Micheli

10

CDC Computation

¢Method 1: Network traversal algorithm
AConsider initial CDC = CDC,, at the primary inputs

AConsider different cutsets moving through the network
from inputs to outputs

AAs the cutset moves forward

v Consider SDC contribution of the newly considered block
v Remove unneeded variables by consensus

(c) Giovanni De Micheli 1

x1 X2 x3

(c) Giovanni De Micheli

x4

Example

:IIIIIIIIII IIIIIIrIII
...

{d.e}

.-.-.-.-I- «= {d,b,c}
7)

: {b,a,x4}
{x1,a,x4}

|

|

|

|

|

I Yala
TEEEEEEEgEEEEESE ppap—— Y .l.-.l':-'l'-'l'

|

|

|

: I
IO o b T o X2 3 xd)
x1 x2 x3 x4

12

Example

¢ Assume CDC,,=x," x,
¢ Select vertex v,

A Contribution of v, to CDC.,= a @ (x, @ x3)
A Updated CDC. =X 1 X 4 +a® (X, D x3)
A Drop variables D = {x,, x;} by consensus:
A CDC.i=X(Xg

¢ Select vertex v,

A Contribution to CDC_: b © (x4 + a).

v Updated CDC.;=x{" X, +b @ (x; +a)
A Drop variables x; by consensus:

v CDC.=b'x, +b’a

..
¢ CDC,,=¢’ =2,

(c) Giovanni De Micheli

[]
____l
al
"l

[|
[]

[|
-
[|
——
o
D
Syt

|
EEEE N EEEEEEEEER IIJII
|_J__ﬂ__t_, {x1,x2,x3,x4}
x1 x2 x3 x4

13

CDC Computation

CONTROLLABILITY(G,(V,E) , CDC,,) {

c=V

cDC,,=CDC,,;

foreach vertex v, € Vin topological order {
C=CUv,;
CDC,,=CDC_,* f, D x;
D ={v e Cs.t. all direct successors of v are in C}
foreach vertexv, € D

CD Ccut = y(CD Ccut);
C=C-D;
I
cDC,,=CDC_,:

(c) Giovanni De Micheli

14

CDC Computation

¢ Method 2: range or image computation

¢ Consider the function f expressing the behavior of the
cutset variables in terms of primary inputs

¢ CDC_ is the complement of the range of f when CDC,, =0
& CDC_, is the complement of the image of (CDC;,)’ under f

¢ The range and image can be computed recursively

A Terminal case: scalar function

ATherangeofy=f(x)isy+y (any value)
unless f (orf)is atautology and the rangeisy (ory’)

(c) Giovanni De Micheli 15

Example

o range(f) = d range((b+c)|g-pc=1) + d’ range((b+c)|y-pc=o)
¢ Whend=1,thenbc=1—-b+c=1is TAUTOLOGY

¢ If | choose 1 as top entry in output vector:

A the bottom entry is also 1. b

= -
- =

¢ When d =0, then bc =0 — b+c = {0,1}

d 001

e 011

¢ If | choose 0 as top entry in output vector:

A The bottom entry can be either 0 or 1.
o range(f)=de+d (e+e’)=de+d =d’ +e

(c) Giovanni De Micheli 16

Example

———————————

A

A TT

x1 x2x3 x4

f = [ﬁ] = [(X1+a)(x4+a)] _ [XXyt a]

(c) Giovanni De Micheli

Example

=

range(f) = d range(f2|xx, +a=1) + d’ range(f?|xx, + a=0)
= d range(x, + X, + a|xx,+a=1) + d’ range(x, + X, + a|(xx, + aj=0)
=d range(1) + d’ range(a’ (x; @ x,))
=de+d (ete’)
=e+d

¢CDC,=(e+d’) =de” =22,

(c) Giovanni De Micheli 18

Example

———————————

CDC,,=x",x’,

A

x1 x2_x3 x4

f = [ﬁ] = [(X1+a)(x4+a)] _ [XXyt a]

f2 (x;+a)+(x,+a)] [x;+x,+a

(c) Giovanni De Micheli

== — === === === - ===

Example

= (DEDED

image(f) = d image(f|xx, +a=1) + d’ image(f?|(x.x, + a)=0)

= d image(x, + X, * a|xx, +a)=1) + d’ image(x, + X, + a|(xx, + a)=0)

=d image(1) +d’ image(1)

=de+d’ e

=e
¢CDC,,=¢ =2,

(c) Giovanni De Micheli 20

Observability analysis

¢ Complementary to controllability

A Analyze network from outputs to inputs

¢ More complex because network has several outputs
and observability depends on output

¢ Observability may be understood in terms of perturbations

Alf you flip the polarity of a signal at net x, and there is no change
in the outputs, then x is not observable

(c) Giovanni De Micheli 21

Observability don ’t care conditions

¢ Conditions under which a change in polarity of a signal x is
not perceived at the output

¢ If there is an explicit representation of the function,
the ODC is the complement of the Boolean difference
ODC = (of | ox)’

¢ Often, the terminal behavior is described implicitly

A Applying chain rule to Boolean difference is computationally hard

(c) Giovanni De Micheli 22

Tree-network traversal

¢ Consider network from outputs to input

¢ At root
AODC, is given
Alt may be empty
¢ At internal nodes:
Alocal functiony = f,(x)
A0DC, = (of,/dx)’ +0DC,
Observability don’ t care set has two components:

A Observability of the local function and observability of the
network beyond the local block

(c) Giovanni De Micheli

23

Example

e=bh+c

b=X1+a1 b C

x1 af a2 x4

¢ Assume ODC_,=0DC_=0

¢ 0DC, =(of Job)’ =(b+c)|,-1@ (b+cC)|,-g=C
¢ 0DC_ = (df.Joc) =b

¢ ODCx, = ODC,, + (df,/ox,)’ =c + a,

(c) Giovanni De Micheli 24

Non-tree network traversal

¢ General networks have forks and fanout
reconvergence

oFor each fork point, the contribution to the
ODC depends on both paths

¢Network traversal cannot be applied in a
straightforward way

¢More elaborate analysis is needed

(c) Giovanni De Micheli

b , c
x1 a x4

25

Two-way fork

¢Compute ODC sets associated with edges
+Recombine ODCs at fork point

¢ Theorem:
A ODCX - ODCx,y|x=x’ @ODCX,Z
A 0DC, =0DC, ., @ 0DC,,

¢ Multi-way forks can be reduced to a

sequence of two-way forks

(c) Giovanni De Micheli 26

Example

b’ c’
onc.=(?); obc,=(¢);
¢ (b) b (c)

T+ X a X, +X
C + X, + X, + X

’ ’ ’ _-1__2 g_-.4__
ODCa,c= +X‘)=(2X1 '|'X4) e

b + X, + X4 * X4

= @D =X X \g (@ X X}z [XiXq
ODC, ODCa,b|a=a b ODCa’C £’+ X4+ X1) ® (3 + Xt X4) (X1 + X4)

(c) Giovanni De Micheli 27

Don’ t care computation
summary

Controllability don ’t cares are derived by image
computation

ARecursive algorithms and data structure are applied

Observability don ’t cares are derived by backward traversal
A Exact and approximate computation

A Approximate methods compute don ’t care subsets

(c) Giovanni De Micheli 28

Transformations with don’ t cares

¢ Boolean simplification
A Generate local DC set for local functions
A Use heuristic minimizer (e.g., Espresso)

A Minimize the number of literals

¢ Boolean substitution:
A Simplify a function by adding one (ore more) inputs

A Equivalent to simplification with global don ’t care sets

(c) Giovanni De Micheli

29

Example — Boolean substitution

¢ Substitute g=a+cdintof,=a+bhcd +e
AObtainf,=a+hg+e

¢ Method
A Compute SDC including q @ (a+cd)=q’ a+q cd +qa’ (cd)’
ASimplify f, =a+bcd+ewithDC=qg a+q cd+qga’ (cd)

AObtain f, =a + bq +e

¢ Result

A Simplified function has one fewer literal by changing the support
of f,

(c) Giovanni De Micheli 30

Simplification operator

¢ Cycle over the network blocks
A Compute local don’ t care conditions
A Minimize

¢ Issues:

ADon’ t care sets change as blocks are being simplified
Alteration may not have a fixed point

Alt would be efficient to parallelize some simplifications

(c) Giovanni De Micheli

31

Optimization and perturbation

+ Minimizing a function at a block x is the replacement of a
local function f, with a new function g,

¢ This is equivalent to perturbing the network locally by
- 6x = fx ® 9x
¢ Conditions for a feasible replacement

A Perturbation bounded by local don’ t care sets
A O, included in DC_, + ODC + CDC

+ Smaller, approximate don 't care sets can be used

A But have smaller degrees of freedom

(c) Giovanni De Micheli 32

Example

ST ; ,
b~)JZD_L b—|_>_:1D—L
c — y c— y

¢ No external don 't care set.

¢ Replace AND by wire: g, = a

¢ Analysis:
AD=f ®g,=ab®a=ab’
AODC, =y’ =b’ +¢’

Ad=ab’ =DC,=b’ +c’ = feasible!

(c) Giovanni De Micheli 33

Parallel simplification

¢ Parallel minimization of logic blocks is always possible
when blocks are logically independent

A Partitioned network
¢ Within a connected network, logic blocks affect each other

¢ Doing parallel minimization is like introducing multiple
perturbations

ABut it is attractive for efficiency reasons

¢ Perturbation analysis shows that degrees of freedom cannot
be represented by just an upper bound on the perturbation

A Boolean relation model

(c) Giovanni De Micheli 34

Example

oPerturbations at x and y are

related because of the ?:
reconvergent fanout at z

¢ Cannot change simultaneously

A abinto a (a)

Acbintoc

(c) Giovanni De Micheli 35

Boolean relation model

a X

)

-/ 2
b _{)
.)

y

a b c T,y
O 0 0]{00,01, 10}
O 0 1/|{00,01, 10}
O 1 0/]{00,01, 10}
O 1 1/|{00,01, 10}
1 0 0/|{00,01, 10}
1 0 1 /|{00,01, 10}
1 1 0/{00,01, 10}
1 1 1 { 11 }

(c) Giovanni De Micheli

* =

= % | O

= % |0

36

Boolean relation model

¢ Boolean relation minimization is the correct approach to
handle Boolean optimization at multiple vertices

¢ Necessary steps
ADerive equivalence classes for Boolean relation

A Use relation minimizer

¢ Practical considerations

A High computational requirement to use Boolean relations

A Use approximations instead

(c) Giovanni De Micheli 37

Parallel Boolean optimization
compatible don 't care sets

¢ Determine a subset of don ’t care sets which is safe to use
in a parallel minimization

A Remove those degrees of freedom that can lead to
transformations incompatible with others effected in parallel

Using compatible don 't care sets, only upper bounds on
the perturbation need to be satisfied

¢ Faster and efficient method

(c) Giovanni De Micheli 38

Example

¢ Parallel optimization at two vertices

¢ First vertex x
ACODC equal to ODC set
ACODC, =0DC,

¢ Second vertex y

ACODC is smaller than its ODC to be safe enough to allow for
transformations permitted by the first ODC

ACODC, = C,(0DC,) + ODC, ODC’,
¢ Order dependence

(c) Giovanni De Micheli

39

a >_ X
c > y
¢CODC,=0DC,=x" =b" +a’

¢0DC, =y’ =b’ +c¢’
CODC, = C,(0DC,) + 0DC,(ODC,)’

=Cy(y’)+y x=y x

= (b’ +c¢’)ab =abc’

(c) Giovanni De Micheli

40

Example (2)

—1
Al

¢ Allowed perturbation:

Af, =bc—g,=c
Ad =bc®c=b ccCODC ,=b" +a’
¢ Disallowed perturbation:

Af =ab — g, =a.
Ad,=ab®a=ab’ ¢ CODC, =abc’

(c) Giovanni De Micheli

Boolean methods
Summary

¢ Boolean methods are powerful means to restructure networks

A Computationally intensive

Boolean methods rely heavily on don 't care computation

A Efficient methods

A Possibility to subset the don ’t care sets

¢ Boolean method often change the network substantially,
and it is hard to undo Boolean transformations

(c) Giovanni De Micheli 42

Module 2

¢ Objectives
A Testability

ARelations between testability and Boolean methods

(c) Giovanni De Micheli

43

Testability

¢ Generic term to mean easing the testing of a circuit

¢ Testability in logic synthesis context
A Assume combinational circuit

A Assume single/multiple stuck-at fault

¢ Testability is referred to as the possibility of generating
test sets for all faults

AProperty of the circuit

A Related to fault coverage

(c) Giovanni De Micheli

44

Test for stuck-ats

¢ Net y stuck-at 0
Alnput pattern that sets y to TRUE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Net y stuck-at 1
Alnput pattern that sets y to FALSE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Testing is based on controllability and observability

(c) Giovanni De Micheli 45

Test sets — don ’t care interpretation

¢ Stuck-at 0 on nety
A{ Input vector t such that y(t) ODC’ y (t) =1}

¢ Stuck-at 1 on nety
A{ Input vector t such thaty’ (t) ODC’ y (t) =1}

(c) Giovanni De Micheli

46

Using testing methods for synthesis

¢ Redundancy removal

A Use ATPG to search for untestable fault
¢ If stuck-at 0 on net y is untestable:
ASety=0
A Propagate constant
¢ If stuck-at 1 on net y is untestable
ASety=1

A Propagate constant

¢ lterate for each untestable fault

(c) Giovanni De Micheli

47

(c) Giovanni De Micheli

a
b

a
b

C

z
Y
L/
0
—IL
z
N

NG
_—ch N

(c)

48

Redundancy removal and perturbation analysis

¢Stuck-atOony
Ay set to 0. Namely g, =f,| - — 2
APerturbation:

v =1, @ {5 =y of,/oy
¢ Perturbation is feasible < fault is untestable

ANo input vector t can make y(t)- ODC,’ (t) true

ANo input vector t can make y(t): ODC,’ (t)- of,/dy true
vBecause ODC, = ODC, + (of /ay)’

(c) Giovanni De Micheli 49

Redundancy removal and perturbation analysis

¢ Assume untestable stuck-at 0 faulit.
ey- ODC, - of /oy — SDC

¢Local don’ t care set:
ADC, 5 ODC, +y- ODC,’ - of,/dy
ADC, 5 ODC, +y- of,/dy

o Perturbation o = y- of /gy

Alncluded in the local don’ t care set

(c) Giovanni De Micheli

50

Rewiring

¢ Extension to redundancy removal
A Add connection in a circuit

A Create other redundant connections

A Remove redundant connections

¢ Iterate procedure to reduce network
A A connection corresponds to a wire
A Rewiring modifies gates and wiring structure

A Wires may have specific costs due to distance

(c) Giovanni De Micheli

51

(@ i<

Example

X
N
h — y

\7/

(c) Giovanni De Micheli

52

Synthesis for testability

¢ Synthesize fully testable circuits

AFor single or multiple stuck-at faults

¢ Realizations

A Two-level forms

A Multi-level networks

¢ Since synthesis can modify the network properties,
testability can be addressed during synthesis

(c) Giovanni De Micheli

53

Two-level forms

o Full testability for single stuck-at faults:

APrime and irredundant covers

o Full testability for multiple stuck-at faults

APrime and irredundant cover when

v Single output function
v No product-term sharing
v Each component is prime and irredundant

(c) Giovanni De Micheli

o4

Example f=a’b” +b'c+ac+ab

a’

"
.®b\,_
o

s

>

chcl:

N

(c) Giovanni De Micheli

95

Multiple-level networks

¢ Consider logic networks with local functions in sop form

¢ Prime and irredundant network
ANo literal and no implicant of any local function can be dropped

A The AND-OR implementation is fully testable for single stuck-at faults

¢ Simultaneous prime and irredundant network

A No subsets of literals and no subsets of implicants can be dropped

A The AND-OR implementation is fully testable for multiple stuck-ats

(c) Giovanni De Micheli 56

Synthesis for testability

¢ Heuristic logic minimization (e.g., Espresso) is sufficient to
insure testability of two-level forms

¢ To achieve fully testable networks, simplification has to be
applied to all logic blocks with full don ’t care sets

In practice, don’ t care sets change as neighboring blocks
are optimized

¢ Redundancy removal is a practical way of achieving
testability properties

(c) Giovanni De Micheli 57

Summary - Synthesis for testability

¢ There is synergy between synthesis and testing

ADon’ t care conditions play a major role in both fields

¢ Testable network correlate to a small area implementation
¢ Testable network do not require to slow-down the circuit

¢ Algebraic transformations preserve multi-fault testability,
and are preferable under this aspect

(c) Giovanni De Micheli 58

