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Module 1

¢ Objectives
A What are Boolean methods

A How to compute don’t care conditions

v Controllability
v Observability

A Boolean transformations
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Boolean methods

¢ Exploit Boolean properties of logic functions
# Use don ’t care conditions

¢ More complex algorithms

A Potentially better solutions

A Harder to reverse the transformations

¢ Used within most synthesis tools
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External don 't care conditions

# Controllability don ’t care set CDC,,

Alnput patterns never produced by the environment at the
network’ s input

# Observability don ’t care set ODC

Alnput patterns representing conditions when an output is not
observed by the environment

A Relative to each output

A Vector notation
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Overall external don 't care set

+Sum the controllability don ’t cares to each entry of the

observability don ’t care set vector

DC.;t = CDC;,,+0ODC, =
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Internal don 't care conditions
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Internal don 't care conditions

¢ Induced by the network structure

# Controllability don ’t care conditions:

A Patterns never produced at the inputs of a sub-network

# Observability don 't care conditions

A Patterns such that the outputs of a sub-network are not observed
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Example of optimization with don ’t cares

L
L

x=a'+b\ x=a’+b\
— —

y=abx+a’cx y=ax+ta'c

¢CDC of y includes ab’ x +a’ x’

¢ Minimize f, to obtain: g, =ax+a'c
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Satisfiability don 't care conditions

¢ Invariant of the network:

x=f, > x#f, < SDC

‘SD C = Zallinternal nodes x El-) fX

¢ Useful to compute controllability don't cares

(c) Giovanni De Micheli
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CDC Computation

¢Method 1: Network traversal algorithm
AConsider initial CDC = CDC,, at the primary inputs

AConsider different cutsets moving through the network
from inputs to outputs

AAs the cutset moves forward

v Consider SDC contribution of the newly considered block
v Remove unneeded variables by consensus
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Example

¢ Assume CDC,,=x," x,
¢ Select vertex v,

A Contribution of v, to CDC.,= a @ (x, @ x3)
A Updated CDC. =X 1 X 4 +a® (X, D x3)
A Drop variables D = {x,, x;} by consensus:
A CDC.i=X( Xg

¢ Select vertex v,

A Contribution to CDC_: b © (x4 + a).

v Updated CDC.;=x{" X, +b @ (x; +a)
A Drop variables x; by consensus:

v CDC.=b'x, +b’a

..
¢ CDC,,=¢’ =2,

(c) Giovanni De Micheli
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CDC Computation

CONTROLLABILITY(G,(V,E) , CDC,,) {

c=V

cDC,,=CDC,,;

foreach vertex v, € Vin topological order {
C=CUv,;
CDC,,=CDC_,* f, D x;
D ={v e Cs.t. all direct successors of v are in C}
foreach vertexv, € D

CD Ccut = y( CD Ccut);
C=C-D;
I
cDC,,=CDC_,:

(c) Giovanni De Micheli
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CDC Computation

¢ Method 2: range or image computation

¢ Consider the function f expressing the behavior of the
cutset variables in terms of primary inputs

¢ CDC_ is the complement of the range of f when CDC,, =0
& CDC_, is the complement of the image of (CDC;,)’ under f

¢ The range and image can be computed recursively

A Terminal case: scalar function

ATherangeofy=f(x)isy+y (any value)
unless f (orf )is atautology and the rangeisy (ory’ )
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Example

o range(f) = d range((b+c)|g-pc=1) + d’ range((b+c)|y-pc=o)
¢ Whend=1,thenbc=1—-b+c=1is TAUTOLOGY

¢ If | choose 1 as top entry in output vector:

A the bottom entry is also 1. b

= -
- =

¢ When d =0, then bc =0 — b+c = {0,1}

d 001

e 011

¢ If | choose 0 as top entry in output vector:

A The bottom entry can be either 0 or 1.
o range(f)=de+d (e+e’)=de+d =d’ +e
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Example
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A TT

x1 x2x3 x4

f = [ﬁ] = [(X1+a)(x4+a)] _ [ XXyt a ]
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Example

=

range(f) = d range(f2|xx, +a=1) + d’ range(f?|xx, + a=0)
= d range(x, + X, + a|xx,+a=1) + d’ range(x, + X, + a|(xx, + aj=0)
=d range(1) + d’ range(a’ (x; @ x,))
=de+d (ete’)
=e+d

¢CDC,=(e+d’ ) =de” =22,
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Example

———————————

CDC,,=x",x’,

A

x1 x2_x3 x4

f = [ﬁ] = [(X1+a)(x4+a)] _ [ XXyt a ]

f2 (x;+a)+(x,+a)]  [x;+x,+a

(c) Giovanni De Micheli
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Example

= (DEDED

image(f) = d image(f|xx, +a=1) + d’ image(f?|(x.x, + a)=0)

= d image(x, + X, * a|xx, +a)=1) + d’ image(x, + X, + a|(xx, + a)=0)

=d image(1) +d’ image(1)

=de+d’ e

=e
¢CDC,,=¢ =2,
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Observability analysis

¢ Complementary to controllability

A Analyze network from outputs to inputs

¢ More complex because network has several outputs
and observability depends on output

¢ Observability may be understood in terms of perturbations

Alf you flip the polarity of a signal at net x, and there is no change
in the outputs, then x is not observable

(c) Giovanni De Micheli 21



Observability don ’t care conditions

¢ Conditions under which a change in polarity of a signal x is
not perceived at the output

¢ If there is an explicit representation of the function,
the ODC is the complement of the Boolean difference
ODC = ( of | ox)’

¢ Often, the terminal behavior is described implicitly

A Applying chain rule to Boolean difference is computationally hard

(c) Giovanni De Micheli 22



Tree-network traversal

¢ Consider network from outputs to input

¢ At root
AODC, is given
Alt may be empty
¢ At internal nodes:
Alocal functiony = f,(x)
A0DC, = (of,/dx)’ +0DC,
# Observability don’ t care set has two components:

A Observability of the local function and observability of the
network beyond the local block

(c) Giovanni De Micheli
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Example

e=bh+c

b=X1+a1 b C

x1 af a2 x4

¢ Assume ODC_,=0DC_=0

¢ 0DC, =(of Job)’ =(b+c)|,-1@ (b+cC)|,-g=C
¢ 0DC_ = (df.Joc) =b

¢ ODCx, = ODC,, + (df,/ox,)’ =c + a,

(c) Giovanni De Micheli 24



Non-tree network traversal

¢ General networks have forks and fanout
reconvergence

oFor each fork point, the contribution to the
ODC depends on both paths

¢Network traversal cannot be applied in a
straightforward way

¢More elaborate analysis is needed

(c) Giovanni De Micheli
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Two-way fork

¢Compute ODC sets associated with edges
+Recombine ODCs at fork point

¢ Theorem:
A ODCX - ODCx,y|x=x’ @ODCX,Z
A 0DC, =0DC, ., @ 0DC,,

¢ Multi-way forks can be reduced to a

sequence of two-way forks

(c) Giovanni De Micheli 26



Example

b’ c’
onc.=(?); obc,=(¢);
¢ (b) b (c)

T+ X a X, +X
C + X, + X, + X

’ ’ ’ _-1__2 g_-.4__
ODCa,c= +X‘)=(2X1 '|'X4) e

b + X, + X4 * X4

= @D =X X \g (@ X X}z [ XiXq
ODC, ODCa,b|a=a b ODCa’C £’+ X4+ X1) ® (3 + Xt X4) (X1 + X4)
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Don’ t care computation
summary

# Controllability don ’t cares are derived by image
computation

ARecursive algorithms and data structure are applied

# Observability don ’t cares are derived by backward traversal
A Exact and approximate computation

A Approximate methods compute don ’t care subsets

(c) Giovanni De Micheli 28



Transformations with don’ t cares

¢ Boolean simplification
A Generate local DC set for local functions
A Use heuristic minimizer (e.g., Espresso)

A Minimize the number of literals

¢ Boolean substitution:
A Simplify a function by adding one (ore more) inputs

A Equivalent to simplification with global don ’t care sets

(c) Giovanni De Micheli
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Example — Boolean substitution

¢ Substitute g=a+cdintof,=a+bhcd +e
AObtainf,=a+hg+e

¢ Method
A Compute SDC including q @ (a+cd)=q’ a+q cd +qa’ (cd)’
ASimplify f, =a+bcd+ewithDC=qg a+q cd+qga’ (cd)

AObtain f, =a + bq +e

¢ Result

A Simplified function has one fewer literal by changing the support
of f,

(c) Giovanni De Micheli 30



Simplification operator

¢ Cycle over the network blocks
A Compute local don’ t care conditions
A Minimize

¢ Issues:

ADon’ t care sets change as blocks are being simplified
Alteration may not have a fixed point

Alt would be efficient to parallelize some simplifications

(c) Giovanni De Micheli
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Optimization and perturbation

+ Minimizing a function at a block x is the replacement of a
local function f, with a new function g,

¢ This is equivalent to perturbing the network locally by
- 6x = fx ® 9x
¢ Conditions for a feasible replacement

A Perturbation bounded by local don’ t care sets
A O, included in DC_, + ODC + CDC

+ Smaller, approximate don 't care sets can be used

A But have smaller degrees of freedom

(c) Giovanni De Micheli 32



Example

ST ; ,
b~ )JZD_L b—|_>_:1D—L
c — y c— y

¢ No external don 't care set.

¢ Replace AND by wire: g, = a

¢ Analysis:
AD=f ®g,=ab®a=ab’
AODC, =y’ =b’ +¢’

Ad=ab’ =DC,=b’ +c’ = feasible!

(c) Giovanni De Micheli 33



Parallel simplification

¢ Parallel minimization of logic blocks is always possible
when blocks are logically independent

A Partitioned network
¢ Within a connected network, logic blocks affect each other

¢ Doing parallel minimization is like introducing multiple
perturbations

ABut it is attractive for efficiency reasons

¢ Perturbation analysis shows that degrees of freedom cannot
be represented by just an upper bound on the perturbation

A Boolean relation model

(c) Giovanni De Micheli 34



Example

oPerturbations at x and y are

related because of the ?:
reconvergent fanout at z

¢ Cannot change simultaneously

A abinto a (a)

Acbintoc
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Boolean relation model

a X
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O 0 0]{00,01, 10}
O 0 1/|{00,01, 10}
O 1 0/]{00,01, 10}
O 1 1/|{00,01, 10}
1 0 0/|{00,01, 10}
1 0 1 /|{00,01, 10}
1 1 0/{00,01, 10}
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Boolean relation model

¢ Boolean relation minimization is the correct approach to
handle Boolean optimization at multiple vertices

¢ Necessary steps
ADerive equivalence classes for Boolean relation

A Use relation minimizer

¢ Practical considerations

A High computational requirement to use Boolean relations

A Use approximations instead

(c) Giovanni De Micheli 37



Parallel Boolean optimization
compatible don 't care sets

¢ Determine a subset of don ’t care sets which is safe to use
in a parallel minimization

A Remove those degrees of freedom that can lead to
transformations incompatible with others effected in parallel

# Using compatible don 't care sets, only upper bounds on
the perturbation need to be satisfied

¢ Faster and efficient method

(c) Giovanni De Micheli 38



Example

¢ Parallel optimization at two vertices

¢ First vertex x
ACODC equal to ODC set
ACODC, =0DC,

¢ Second vertex y

ACODC is smaller than its ODC to be safe enough to allow for
transformations permitted by the first ODC

ACODC, = C,(0DC,) + ODC, ODC’,
¢ Order dependence

(c) Giovanni De Micheli
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a >_ X
c > y
¢CODC,=0DC,=x" =b" +a’

¢0DC, =y’ =b’ +c¢’
# CODC, = C,(0DC,) + 0DC,(ODC,)’

=Cy(y’ )+y x=y x

= (b’ +c¢’ )ab =abc’

(c) Giovanni De Micheli
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Example (2)

—1
Al

¢ Allowed perturbation:

Af, =bc—g,=c
Ad =bc®c=b ccCODC ,=b" +a’
¢ Disallowed perturbation:

Af =ab — g, =a.
Ad,=ab®a=ab’ ¢ CODC, =abc’

(c) Giovanni De Micheli



Boolean methods
Summary

¢ Boolean methods are powerful means to restructure networks

A Computationally intensive

# Boolean methods rely heavily on don 't care computation

A Efficient methods

A Possibility to subset the don ’t care sets

¢ Boolean method often change the network substantially,
and it is hard to undo Boolean transformations

(c) Giovanni De Micheli 42



Module 2

¢ Objectives
A Testability

ARelations between testability and Boolean methods

(c) Giovanni De Micheli
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Testability

¢ Generic term to mean easing the testing of a circuit

¢ Testability in logic synthesis context
A Assume combinational circuit

A Assume single/multiple stuck-at fault

¢ Testability is referred to as the possibility of generating
test sets for all faults

AProperty of the circuit

A Related to fault coverage

(c) Giovanni De Micheli
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Test for stuck-ats

¢ Net y stuck-at 0
Alnput pattern that sets y to TRUE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Net y stuck-at 1
Alnput pattern that sets y to FALSE

A Observe output

A Output of faulty circuit differs from correct circuit

¢ Testing is based on controllability and observability

(c) Giovanni De Micheli 45



Test sets — don ’t care interpretation

¢ Stuck-at 0 on nety
A{ Input vector t such that y(t) ODC’ y (t) =1}

¢ Stuck-at 1 on nety
A{ Input vector t such thaty’ (t) ODC’ y (t) =1}

(c) Giovanni De Micheli
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Using testing methods for synthesis

¢ Redundancy removal

A Use ATPG to search for untestable fault
¢ If stuck-at 0 on net y is untestable:
ASety=0
A Propagate constant
¢ If stuck-at 1 on net y is untestable
ASety=1

A Propagate constant

¢ lterate for each untestable fault

(c) Giovanni De Micheli
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(c) Giovanni De Micheli
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Redundancy removal and perturbation analysis

¢Stuck-atOony
Ay set to 0. Namely g, =f,| - — 2
APerturbation:

v =1, @ {5 =y of,/oy
¢ Perturbation is feasible < fault is untestable

ANo input vector t can make y(t)- ODC,’ (t) true

ANo input vector t can make y(t): ODC,’ (t)- of,/dy true
vBecause ODC, = ODC, + (of /ay)’

(c) Giovanni De Micheli 49



Redundancy removal and perturbation analysis

¢ Assume untestable stuck-at 0 faulit.
ey- ODC, - of /oy — SDC

¢Local don’ t care set:
ADC, 5 ODC, +y- ODC,’ - of,/dy
ADC, 5 ODC, +y- of,/dy

o Perturbation o = y- of /gy

Alncluded in the local don’ t care set

(c) Giovanni De Micheli
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Rewiring

¢ Extension to redundancy removal
A Add connection in a circuit

A Create other redundant connections

A Remove redundant connections

¢ Iterate procedure to reduce network
A A connection corresponds to a wire
A Rewiring modifies gates and wiring structure

A Wires may have specific costs due to distance

(c) Giovanni De Micheli
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Synthesis for testability

¢ Synthesize fully testable circuits

AFor single or multiple stuck-at faults

¢ Realizations

A Two-level forms

A Multi-level networks

¢ Since synthesis can modify the network properties,
testability can be addressed during synthesis

(c) Giovanni De Micheli
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Two-level forms

o Full testability for single stuck-at faults:

APrime and irredundant covers

o Full testability for multiple stuck-at faults

APrime and irredundant cover when

v Single output function
v No product-term sharing
v Each component is prime and irredundant

(c) Giovanni De Micheli
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Example f=a’b” +b'c+ac+ab
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Multiple-level networks

¢ Consider logic networks with local functions in sop form

¢ Prime and irredundant network
ANo literal and no implicant of any local function can be dropped

A The AND-OR implementation is fully testable for single stuck-at faults

¢ Simultaneous prime and irredundant network

A No subsets of literals and no subsets of implicants can be dropped

A The AND-OR implementation is fully testable for multiple stuck-ats

(c) Giovanni De Micheli 56



Synthesis for testability

¢ Heuristic logic minimization (e.g., Espresso) is sufficient to
insure testability of two-level forms

¢ To achieve fully testable networks, simplification has to be
applied to all logic blocks with full don ’t care sets

# In practice, don’ t care sets change as neighboring blocks
are optimized

¢ Redundancy removal is a practical way of achieving
testability properties

(c) Giovanni De Micheli 57



Summary - Synthesis for testability

¢ There is synergy between synthesis and testing

ADon’ t care conditions play a major role in both fields

¢ Testable network correlate to a small area implementation
¢ Testable network do not require to slow-down the circuit

¢ Algebraic transformations preserve multi-fault testability,
and are preferable under this aspect

(c) Giovanni De Micheli 58



