
Boolean Methods for Multi-level Logic Synthesis

Giovanni De Micheli
Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

◆Objectives
▲What are Boolean methods
▲How to compute don’t care conditions

▼ Controllability
▼ Observability

▲Boolean transformations

(c) Giovanni De Micheli 3

Boolean methods

◆Exploit Boolean properties of logic functions

◆Use don�t care conditions

◆More complex algorithms
▲Potentially better solutions
▲Harder to reverse the transformations

◆Used within most synthesis tools

(c) Giovanni De Micheli 4

External don�t care conditions

◆Controllability don�t care set CDCin

▲ Input patterns never produced by the environment at the
network�s input

◆Observability don�t care set ODCout

▲ Input patterns representing conditions when an output is not
observed by the environment

▲Relative to each output

▲Vector notation

(c) Giovanni De Micheli 5

Example

(c) Giovanni De Micheli 6

Overall external don�t care set

◆Sum the controllability don�t cares to each entry of the
observability don�t care set vector

(c) Giovanni De Micheli 7

Internal don�t care conditions

(c) Giovanni De Micheli 8

Internal don�t care conditions

◆ Induced by the network structure

◆Controllability don�t care conditions:
▲Patterns never produced at the inputs of a sub-network

◆Observability don�t care conditions
▲Patterns such that the outputs of a sub-network are not observed

(c) Giovanni De Micheli 9

Example of optimization with don�t cares

◆CDC of y includes ab�x + a�x�

◆Minimize fy to obtain: gy = ax + a�c

x = a� + b

y = abx + a�cx

x = a� + b

y = ax + a�c

(c) Giovanni De Micheli 10

Satisfiability don�t care conditions

◆Invariant of the network:

x = fx → x ≠ fx Í SDC

◆SDC = ∑all internal nodes x Å fx

◆Useful to compute controllability don't cares

(c) Giovanni De Micheli 11

CDC Computation

◆Method 1: Network traversal algorithm

▲Consider initial CDC = CDCin at the primary inputs

▲Consider different cutsets moving through the network
from inputs to outputs

▲As the cutset moves forward
▼Consider SDC contribution of the newly considered block
▼Remove unneeded variables by consensus

(c) Giovanni De Micheli 12

Example

a

b c

d e

x1 x4x3x2

z1 z2

a

b c

d e

x1 x4x3x2

z1 z2

{d,e}

{b,c}

{b,a,x4}

{x1,a,x4}

{x1,x2,x3,x4}

{d,b,c}

(c) Giovanni De Micheli 13

Example

◆ Assume CDCin = x1�x4�

◆ Select vertex va

▲ Contribution of va to CDCcut= a Å (x2 Å x3)
▲ Updated CDCcut= x�1 x�4 + a Å (x2 Å x3)
▲ Drop variables D = {x2, x3} by consensus:
▲ CDCcut = x1�x4�

◆ Select vertex vb

▲ Contribution to CDCcut: b Å (x1 + a).
▼ Updated CDCcut = x1�x4� + b Å (x1 + a)

▲ Drop variables x1 by consensus:
▼ CDCcut = b�x4� + b�a

◆ …

◆ CDCout = e� = z2�

a

b c

d e

x1 x4x3x2

z1 z2

{d,e}

{b,c}

{b,a,x4}

{x1,a,x4}

{x1,x2,x3,x4}

(c) Giovanni De Micheli 14

CDC Computation

CONTROLLABILITY(Gn(V,E) , CDCin) {

C = VI;

CDCcut = CDCin;
foreach vertex vx Î V in topological order {

C = C U vx;
CDCcut = CDCcut + fx Å x;
D = {v Î C s.t. all direct successors of v are in C}
foreach vertex vy Î D

CDCcut = Cy(CDCcut);
C = C – D;

};
CDCout = CDCcut;

}

(c) Giovanni De Micheli 15

CDC Computation

◆Method 2: range or image computation

◆Consider the function f expressing the behavior of the
cutset variables in terms of primary inputs

◆CDCcut is the complement of the range of f when CDCin = 0

◆CDCcut is the complement of the image of (CDCin)� under f

◆The range and image can be computed recursively
▲Terminal case: scalar function

▲The range of y = f(x) is y + y� (any value)
unless f (or f�) is a tautology and the range is y (or y�)

(c) Giovanni De Micheli 16

Example

b
c d

e
b
c

0 0 1

0 1 1

◆ range(f) = d range((b+c)|d=bc=1) + d� range((b+c)|d=bc=0)

◆ When d = 1, then bc = 1 → b + c = 1 is TAUTOLOGY

◆ If I choose 1 as top entry in output vector:
▲ the bottom entry is also 1.

◆ When d = 0, then bc = 0 → b+c = {0,1}

◆ If I choose 0 as top entry in output vector:
▲ The bottom entry can be either 0 or 1.

◆ range(f) = de + d�(e + e�) = de + d� = d� + e

1
?

1
1→

(c) Giovanni De Micheli 17

Example

a

b c

d e

x1 x4x3x2

z1 z2

f = f1

f2

(x1 + a)(x4 + a)
(x1 + a) + (x4 + a)

x1x4 + a
x1 + x4 + a

==

(c) Giovanni De Micheli 18

range(f) = d range(f2|(x1x4 + a)=1) + d� range(f2|(x1x4 + a)=0)

= d range(x1 + x4 + a|(x1x4 + a)=1) + d� range(x1 + x4 + a|(x1x4 + a)=0)

= d range(1) + d� range(a�(x1 Å x4))

= de + d�(e + e�)

= e + d�

◆CDCout = (e + d�)� = de� = z1z2�

Example

x1

x4a

f2 f1 f�1

(c) Giovanni De Micheli 19

Example

a

b c

d e

x1 x4x3x2

z1 z2

f = f1

f2

(x1 + a)(x4 + a)
(x1 + a) + (x4 + a)

x1x4 + a
x1 + x4 + a

==

CDCin = x�1 x�4

(c) Giovanni De Micheli 20

image(f) = d image(f2|(x1x4 + a)=1) + d� image(f2|(x1x4 + a)=0)

= d image(x1 + x4 + a|(x1x4 + a)=1) + d� image(x1 + x4 + a|(x1x4 + a)=0)

= d image(1) + d� image(1)

= de + d�e

= e

◆CDCout = e� = z2�

Example

x1

x4a

f2 f1 f�1

(c) Giovanni De Micheli 21

Observability analysis

◆Complementary to controllability
▲Analyze network from outputs to inputs

◆More complex because network has several outputs
and observability depends on output

◆Observability may be understood in terms of perturbations
▲ If you flip the polarity of a signal at net x, and there is no change

in the outputs, then x is not observable

(c) Giovanni De Micheli 22

Observability don�t care conditions

◆Conditions under which a change in polarity of a signal x is
not perceived at the output

◆ If there is an explicit representation of the function,
the ODC is the complement of the Boolean difference

ODC = (∂f / ∂x)�

◆Often, the terminal behavior is described implicitly
▲Applying chain rule to Boolean difference is computationally hard

(c) Giovanni De Micheli 23

Tree-network traversal

◆Consider network from outputs to input

◆At root
▲ODCout is given
▲ It may be empty

◆At internal nodes:
▲Local function y = fy(x)
▲ODCx = (∂fy / ∂x)� + ODCy

◆Observability don�t care set has two components:
▲Observability of the local function and observability of the

network beyond the local block

(c) Giovanni De Micheli 24

Example

e = b + c
b = x1 + a1

c = x4 + a2

◆Assume ODCout = ODCe = 0

◆ODCb = (∂fe/∂b)� = (b + c)|b = 1 (b + c)|b = 0 = c

◆ODCc = (∂fe/∂c)� = b

◆ODCx1 = ODCb + (∂fb/∂x1)� = c + a1

b c

e

x1 x4a2a1

Å

(c) Giovanni De Micheli 25

Non-tree network traversal

◆General networks have forks and fanout
reconvergence

◆For each fork point, the contribution to the
ODC depends on both paths

◆Network traversal cannot be applied in a
straightforward way

◆More elaborate analysis is needed

(c) Giovanni De Micheli 26

Two-way fork

◆Compute ODC sets associated with edges

◆Recombine ODCs at fork point

◆Theorem:
▲ ODCx = ODCx,y|x=x� ODCx,z

▲ ODCx = ODCx,z|x=x� ODCx,y

◆Multi-way forks can be reduced to a
sequence of two-way forks

Å
Å

(c) Giovanni De Micheli 27

Example

a

b c

d e

x1 x4x3x2

z1 z2

a

ed

cb

x1 x3x2

z1

x4

z2

ODCc =()b�
b

; ODCb =()c�
c

;

ODCa,b = ()a�x4� + x1
a + x4 + x1

()c� + x1
c + x1

=

ODCa,c =()b� + x4
b + x4

()a�x1� + x4
a + x1 + x4

=

ODCa = ()x1x4
x1 + x4

=ODCa,c ()a�x1� + x4
a + x1 + x4

ODCa,b|a=a� ()a x4� + x1
a’+ x4 + x1

Å Å =

(c) Giovanni De Micheli 28

Don�t care computation
summary

◆Controllability don�t cares are derived by image
computation

▲Recursive algorithms and data structure are applied

◆Observability don�t cares are derived by backward traversal

▲Exact and approximate computation

▲Approximate methods compute don�t care subsets

(c) Giovanni De Micheli 29

Transformations with don�t cares

◆Boolean simplification
▲Generate local DC set for local functions

▲Use heuristic minimizer (e.g., Espresso)

▲Minimize the number of literals

◆Boolean substitution:
▲Simplify a function by adding one (ore more) inputs

▲Equivalent to simplification with global don�t care sets

(c) Giovanni De Micheli 30

Example – Boolean substitution

◆Substitute q = a + cd into fh = a + bcd + e
▲Obtain fh = a + bq + e

◆Method
▲Compute SDC including q Å (a+cd) = q�a +q�cd + qa�(cd)�
▲Simplify fh = a + bcd + e with DC = q�a + q�cd + qa� (cd)�
▲Obtain fh = a + bq +e

◆Result
▲Simplified function has one fewer literal by changing the support

of fh

(c) Giovanni De Micheli 31

Simplification operator

◆Cycle over the network blocks
▲Compute local don�t care conditions

▲Minimize

◆ Issues:
▲Don�t care sets change as blocks are being simplified

▲ Iteration may not have a fixed point

▲ It would be efficient to parallelize some simplifications

(c) Giovanni De Micheli 32

Optimization and perturbation

◆Minimizing a function at a block x is the replacement of a
local function fx with a new function gx

◆This is equivalent to perturbing the network locally by
▲ δx = fx Å gx

◆Conditions for a feasible replacement
▲Perturbation bounded by local don�t care sets
▲ δx included in DCext + ODC + CDC

◆Smaller, approximate don�t care sets can be used
▲But have smaller degrees of freedom

(c) Giovanni De Micheli 33

Example

◆No external don�t care set.

◆Replace AND by wire: gx = a

◆Analysis:
▲δ = fx Å gx = ab Å a = ab�
▲ODCx = y� = b� + c�
▲δ = ab� Í DCx = b� + c�Þ feasible!

x

y
b

c

a
z

x

y
b

c

a
z

(c) Giovanni De Micheli 34

Parallel simplification

◆Parallel minimization of logic blocks is always possible
when blocks are logically independent
▲Partitioned network

◆Within a connected network, logic blocks affect each other
◆Doing parallel minimization is like introducing multiple

perturbations
▲But it is attractive for efficiency reasons

◆Perturbation analysis shows that degrees of freedom cannot
be represented by just an upper bound on the perturbation
▲Boolean relation model

(c) Giovanni De Micheli 35

Example

◆Perturbations at x and y are
related because of the
reconvergent fanout at z

◆Cannot change simultaneously
▲ ab into a

▲ cb into c

(c) Giovanni De Micheli 36

Boolean relation model

(c) Giovanni De Micheli 37

Boolean relation model

◆Boolean relation minimization is the correct approach to
handle Boolean optimization at multiple vertices

◆Necessary steps
▲Derive equivalence classes for Boolean relation

▲Use relation minimizer

◆Practical considerations
▲High computational requirement to use Boolean relations

▲Use approximations instead

(c) Giovanni De Micheli 38

Parallel Boolean optimization
compatible don�t care sets

◆Determine a subset of don�t care sets which is safe to use
in a parallel minimization
▲Remove those degrees of freedom that can lead to

transformations incompatible with others effected in parallel

◆Using compatible don�t care sets, only upper bounds on
the perturbation need to be satisfied

◆Faster and efficient method

(c) Giovanni De Micheli 39

Example

◆Parallel optimization at two vertices

◆First vertex x
▲CODC equal to ODC set

▲CODCx = ODCx

◆Second vertex y
▲CODC is smaller than its ODC to be safe enough to allow for

transformations permitted by the first ODC
▲CODCy = Cx (ODCy) + ODCy ODC�x

◆Order dependence

(c) Giovanni De Micheli 40

Example

◆CODCy = ODCy = x� = b� + a�

◆ODCx = y� = b� + c�

◆CODCx = Cy(ODCx) + ODCx(ODCy)�

= Cy(y�) + y�x = y�x

= (b� + c�)ab = abc�

x

y
b

c

a
z

(c) Giovanni De Micheli 41

Example (2)

◆Allowed perturbation:
▲fy = bc → gy = c
▲δy = bc Å c = b�c Í CODCy = b� + a�

◆Disallowed perturbation:
▲fx = ab → gx = a.

▲δx = ab Å a = ab� Ë CODCx = abc�

x

y
b

c

a
z

(c) Giovanni De Micheli 42

Boolean methods
Summary

◆Boolean methods are powerful means to restructure networks
▲Computationally intensive

◆Boolean methods rely heavily on don�t care computation
▲Efficient methods

▲Possibility to subset the don�t care sets

◆Boolean method often change the network substantially,
and it is hard to undo Boolean transformations

(c) Giovanni De Micheli 43

Module 2

◆Objectives
▲Testability

▲Relations between testability and Boolean methods

(c) Giovanni De Micheli 44

Testability

◆Generic term to mean easing the testing of a circuit

◆Testability in logic synthesis context
▲Assume combinational circuit

▲Assume single/multiple stuck-at fault

◆Testability is referred to as the possibility of generating
test sets for all faults
▲Property of the circuit

▲Related to fault coverage

(c) Giovanni De Micheli 45

Test for stuck-ats

◆Net y stuck-at 0
▲ Input pattern that sets y to TRUE

▲Observe output
▲Output of faulty circuit differs from correct circuit

◆Net y stuck-at 1
▲ Input pattern that sets y to FALSE

▲Observe output
▲Output of faulty circuit differs from correct circuit

◆Testing is based on controllability and observability

(c) Giovanni De Micheli 46

Test sets – don�t care interpretation

◆Stuck-at 0 on net y
▲{ Input vector t such that y(t) ODC�y (t) = 1 }

◆Stuck-at 1 on net y
▲{ Input vector t such that y�(t) ODC�y (t) = 1 }

(c) Giovanni De Micheli 47

Using testing methods for synthesis

◆Redundancy removal
▲Use ATPG to search for untestable fault

◆ If stuck-at 0 on net y is untestable:
▲Set y = 0

▲Propagate constant

◆ If stuck-at 1 on net y is untestable
▲Set y = 1

▲Propagate constant

◆ Iterate for each untestable fault

(c) Giovanni De Micheli 48

Example

(c) Giovanni De Micheli 49

Redundancy removal and perturbation analysis

◆Stuck-at 0 on y
▲y set to 0. Namely gx = fx|y=0

▲Perturbation:
▼δ = fx Å fx|y=0 = y· ∂fx/∂y

◆Perturbation is feasible Û fault is untestable
▲No input vector t can make y(t)· ODCy�(t) true
▲No input vector t can make y(t)· ODCx�(t)· ∂fx/∂y true
▼Because ODCy = ODCx + (∂fx/∂y)�

z x
y

(c) Giovanni De Micheli 50

Redundancy removal and perturbation analysis

◆Assume untestable stuck-at 0 fault.

◆y· ODCx�· ∂fx/∂y Í SDC

◆Local don�t care set:
▲DCx Ê ODCx + y· ODCx�· ∂fx/∂y
▲DCx Ê ODCx + y· ∂fx/∂y

◆Perturbation δ = y· ∂fx/∂y
▲Included in the local don�t care set

(c) Giovanni De Micheli 51

Rewiring

◆Extension to redundancy removal
▲Add connection in a circuit

▲Create other redundant connections

▲Remove redundant connections

◆ Iterate procedure to reduce network
▲A connection corresponds to a wire

▲Rewiring modifies gates and wiring structure

▲Wires may have specific costs due to distance

(c) Giovanni De Micheli 52

Example

g

c

f

h

a
b

c

d

x

y

z

m

(c) Giovanni De Micheli 53

Synthesis for testability

◆Synthesize fully testable circuits
▲For single or multiple stuck-at faults

◆Realizations
▲Two-level forms

▲Multi-level networks

◆Since synthesis can modify the network properties,
testability can be addressed during synthesis

(c) Giovanni De Micheli 54

Two-level forms

◆Full testability for single stuck-at faults:

▲Prime and irredundant covers

◆Full testability for multiple stuck-at faults
▲Prime and irredundant cover when
▼Single output function
▼No product-term sharing
▼Each component is prime and irredundant

(c) Giovanni De Micheli 55

Example f = a�b� + b�c + ac + ab

(c) Giovanni De Micheli 56

Multiple-level networks

◆Consider logic networks with local functions in sop form

◆Prime and irredundant network
▲No literal and no implicant of any local function can be dropped

▲The AND-OR implementation is fully testable for single stuck-at faults

◆Simultaneous prime and irredundant network
▲No subsets of literals and no subsets of implicants can be dropped

▲The AND-OR implementation is fully testable for multiple stuck-ats

(c) Giovanni De Micheli 57

Synthesis for testability

◆Heuristic logic minimization (e.g., Espresso) is sufficient to
insure testability of two-level forms

◆To achieve fully testable networks, simplification has to be
applied to all logic blocks with full don�t care sets

◆ In practice, don�t care sets change as neighboring blocks
are optimized

◆Redundancy removal is a practical way of achieving
testability properties

(c) Giovanni De Micheli 58

Summary – Synthesis for testability

◆There is synergy between synthesis and testing
▲Don�t care conditions play a major role in both fields

◆Testable network correlate to a small area implementation

◆Testable network do not require to slow-down the circuit

◆Algebraic transformations preserve multi-fault testability,
and are preferable under this aspect

