
QUANTUM PHYSICS III
Solutions to Problem Set 9 16 November 2018

1. Classical scattering on a Coulomb potential

1. The energy of the particle moving in the potential U(r) in two dimensions is written
in polar coordinates as follows,

E =
m
2

(ṙ2 + r2φ̇2) + U(r) =
mṙ2

2
+

L2

2mr2 + U(r) , (1)

where L = mr2φ̇ is the angular momentum. Expressing ṙ from the relation above,
we have

ṙ =
dr
dt

=

√
2
m

(E − U(r)) −
L2

m2r2 . (2)

Next, we observe that as long as ṙ , 0,

dφ
dr

=
dφ
dt

dt
dr

=
L

mr2

1√
2
m (E − U(r)) − L2

m2r2

. (3)

Taking the integral, we obtain

φ(r) =

∫ r

∞

L/r2dr√
2m(E − U(r)) − L2/r2

. (4)

2. The deflection angle θ is given by (see figure 1)

θ = |π − 2φ0| , (5)

where φ0 is the angle between the direction to the minimum distance from the scat-
tering center to particle’s orbit and the direction to the infinite distance between
them. Using eq. (4) with U(r) = α/r, we write

φ0 =

∫ ∞

rmin

Ldr

r
√

2mEr2 − 2mαr − L2
. (6)

This integral can be taken analytically, the answer is

φ0 = arcsin
−2mαr − 2L2

r
√

4m2α2 + 8L2mE

∣∣∣∣∣∣∞
rmin

. (7)

It remains to find rmin. It is the point at which ṙ = 0. From eq. (2) it then follows
that

rmin =
α

2E
+

1
2E

√
α2 + 2L2E/m . (8)
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Substituting this into eq. (7), we have

φ0 = − arcsin
α√

α2 + 2L2E/m
+
π

2
. (9)

Hence,

θ = 2 arcsin
|α|√

α2 + 2L2E/m
. (10)

3. Since the energy and the angular momentum are conserved, one can write E =

mv2
∞/2, hence v∞ =

√
2E/m and L = mv∞b =

√
2mEb. Eq.(10) is rewritten as

θ = 2 arcsin
|α|

√
α2 + 4E2b2

. (11)

4. Firstly, let us express b through θ :

b = −
α

2E
cot

θ

2
. (12)

Then, we note that dN = 2πnbdb = 2πnb db
dθdθ, and dσ = dN/n = 2πbdb

dθdθ. On the
other side, from eq. (12) we have

db
dθ

= −
α

2E
1
2

1
sin2(θ/2)

. (13)

Hence,

dσ = 2π
α

2E
cot

(
θ

2

)
α

2E
1
2

dθ
sin2(θ/2)

= π
α2

4E2

cos(θ/2)
sin3(θ/2)

dθ . (14)

Finally, dΩ = 2π sin θdθ = 4π sin(θ/2) cos(θ/2)dθ, and we arrive at

dσ
dΩ

=
α2

16E2

1
sin4(θ/2)

. (15)

5. The integral over eq. (15) is divergent. Therefore, the total cross section is infinite.
The physical interpretation of this is that the potential affects the motion of the
particle regardless its distance to the scattering center. This is a typical example of
the so-called long-range force.

O

θ

b

ϕ0

Fig. 1 – The scattering potential with α < 0.
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2. Differential cross section transformation

For the difference between the laboratory frame and the center-of-mass frame, see figure
2. In the center-of-mass frame, two particles are traveling towards each other. One particle
with mass m1 has a speed vC1 and is traveling in the +x-direction. The other particle with
mass m2 has a speed vC2 and is traveling in the −x-direction. Since we are in the center-
of-mass frame, their momenta should be equal and opposite, so

vC2 = −λvC1 , (16)

where λ = m1/m2. After the collision, the first particle scatters into an angle θCM with
the velocity uC1. But uC1 = vC1, because the collision is elastic. By the same reasoning,
uC2 = vC2. Expressing the velocities as vectors, we have

~vC1 = vC1~i ,

~uC1 = vC1(cos θCM~i + sin θCM~j) ,

~vC2 = −λvC1~i ,

~uC2 = λvC1(cos θCM~i + sin θCM~j) .

(17)

In the lab frame, the particle of mass m1 comes in with the velocity vL1 and collides
with the particle of mass m2 with vL2 = 0 sending them both off in different directions.
The scattered particle is deflected into an angle θLAB and has the velocity uL1. The target
particle is deflected into an angle θ2 and has the velocity uL2. As vectors, the velocities are

~vL1 = vL1~i ,

~uL1 = uL1(cos θLAB~i + sin θLAB~j) ,
~vL2 = 0 ,

~uL2 = uL2(cos θ2~i − sin θ2~j) .

(18)

To relate eqs. (17) and (18), we observe that the two reference frames are transformed to
one another by a Galilean transformation, that is, to obtain the lab frame velocities, one
should subtract vC2 in the x-direction from the center-of-mass frame velocities. Doing so,
the velocities in the center-of-mass frame become,

~vL1 = (1 + λ)vC1~i ,

~uL1 = vC1((cos θCM + λ)~i + sin θCM~j) ,
~vL2 = 0 ,

~uL2 = −λvC1((cos θCM − 1)~i + sin θCM~j) .

(19)

Comparing eqs. (18) and (19), one finds

uL1 cos θLAB = vC1(cos θCM + λ) ,
uL1 sin θLAB = vC1 sin θCM .

(20)

Hence,

tan θLAB =
sin θCM

cos θCM + λ
, (21)
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or
cos θLAB =

1√
1 + tan2 θLAB

=
cos θCM + λ√

1 + 2λ cos θCM + λ2
. (22)

Since the total cross section should not depend on the reference frame, dσ should be
the same in either the lab frame or the center-of-mass frame. However, since there is an
angular dependence in dΩ, the differential cross section is different in different frames.
Since

dσ =
dσ
dΩ

dΩ , (23)

we know that
dσ
dΩ

∣∣∣∣∣
CM

dΩCM =
dσ
dΩ

∣∣∣∣∣
LAB

dΩLAB . (24)

Therefore,
dσ
dΩ

∣∣∣∣∣
CM

=
dσ
dΩ

∣∣∣∣∣
LAB

dΩLAB

dΩCM
. (25)

Since dΩ = 2π sin θdθ, we have,

dΩLAB

dΩCM
=

sin θLABdθLAB

sin θCMdθCM
. (26)

Now, taking the derivative of eq. (22), we find

− sin θLABdθLAB = − sin θCMdθCM

(
1 + λ cos θCM

(1 + 2λ cos θCM + λ2)3/2

)
. (27)

We then see by plugging this into eq. (26) that

dΩLAB

dΩCM
=

1 + λ cos θCM

(1 + 2λ cos θCM + λ2)3/2 , (28)

and, finally,
dσ
dΩ

∣∣∣∣∣
LAB

=
(1 + 2λ cos θCM + λ2)3/2

|1 + λ cos θCM |

dσ
dΩ

∣∣∣∣∣
CM

. (29)

Fig. 2 – Different reference frames
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3. Interaction picture

1. Recalling the relation between states and operators in the Schroedinger and Heisen-
berg pictures, we have

ΨI(t) = Û†0(t)ΨS (t) = Û†0(t)Û(t)ΨH ,

ÂI(t) = Û†0(t)ÂS Û0(t) = Û†0(t)Û(t)ÂH(t)Û†(t)Û0(t) .
(30)

2. The evolution equation for the wave function in the interaction picture is obtained
straightforwardly :

−
~

i
d
dt

ΨI(t) = −
~

i
d
dt

Û†0(t)ΨS (t) = −
~

i
dÛ†0(t)

dt
ΨS (t) −

~

i
Û†0(t)

dΨS (t)
dt

= −Û†0(t)Ĥ0ΨS (t) + Û†0(t)(Ĥ0 + V̂)ΨS (t)

= Û†0(t)V̂Û0(t)ΨI(t) = V̂I(t)ΨI(t) ,

(31)

where in the last line we used the fact that ΨS (t) = Û0(t)ΨI(t).

3. Similarly to the Schroedinger picture in which ΨS (t) = Û(t)Ψ(0), one can define an
operator ÛI(t) such that ΨI(t) = ÛI(t)Ψ(0). From eq. (30) we have

ΨI(t) = Û†0(t)Û(t)Ψ(0) . (32)

Hence ÛI(t) = Û†0(t)Û(t). Substitution of eq. (32) into eq. (31) gives

−
~

i
dÛI(t)

dt
= V̂I(t)ÛI(t) . (33)

The initial condition for the operator ÛI(t) is ÛI(0) = 1.

4. Unitarity versus isometry

1. (a) From D(Û) = H and R(Û) = H it follows that there is an inverse operator
Û−1 such that ÛÛ−1 = 1. Then, from Û†ÛÛ−1 = Û−1 it follows that Û† = Û−1.
Therefore, Û−1ÛÛ† = Û−1, and ÛÛ† = 1.
(b) From Û†Û = 1 if follows that R(Û) ⊆ D(Û†) = H . Then, from ÛÛ† = 1 it
follows that for any element x from D(Û†) the operator Û must map back to x the
image of x under the action of Û†. Hence, R(Û) = D(Û†) = H .

2. One should prove that if H is finite-dimensional, then R(Û) = H follows from
D(Û) = H . After that, Û†Û = 1 will follow from ÛÛ† = 1. To prove the
coincidence of the domain and the range of Û, we enumerate the basis in H as
|1〉, ..., |n〉. Then, Û is represented by an n×n matrix. Since Û†Û = 1, it follows that
det Û = 1. Hence, Û is non-degenerate and there is an inverse n × n matrix Û−1.
Thus,D(Û−1) = H and R(Û) = H .
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3. To construct the required sequence, one can use the Gram–Schmidt orthogonaliza-
tion process. Select the basis |1〉, ..., |n〉, ... in H . Choose the action of Û(λ) on the
vector |1〉 as follows,

Û(λ)|1〉 = |1′〉 =
√
λ |1〉 +

√
1 − λ |2〉 . (34)

We will consider λ in the range [0, 1]. It is clear that 〈1′|1′〉 = 1. Now define the
action of Û(λ) on |2〉 as Û(λ)|2〉 = |2′〉 = c21|1〉 + c22|2〉 + c23|3〉, and choose the
coefficients c21, c22, c23 such that 〈1′|2′〉 = 0 and 〈2′|2′〉 = 1. The orthogonality
condition fixes the values of c21 and c22,

c21 = − f (λ)
√

1 − λ , c22 = f (λ)
√
λ , (35)

up to some arbitrary function f (λ). One can choose, for example, f (λ) =
√
λ. Then,

c23 is fixed by the normalization condition,

c23 =
√

1 − λ2 − λ(1 − λ) . (36)

Hence

Û(λ)|2〉 = |2′〉 = −
√
λ
√

1 − λ |1〉 + λ |2〉 +
√

1 − λ2 − λ(1 − λ) |3〉 . (37)

The next step of this procedure gives,

Û(λ)|3〉 = |3′〉 = c31|1〉 + c32|2〉 + c33|3〉 + c34|4〉 , (38)

where

c31 =
√
λ(λ −

√
1 − λ2 − λ(1 − λ)) ,

c32 =
√
λ(

√
1 − λ2 − λ(1 − λ) +

√
λ
√

1 − λ) ,

c33 =
√
λ(−
√
λ
√

1 − λ − λ) ,

c34 =
√

1 − c31 − c32 − c33 .

(39)

Since H is infinte-dimensional, one can continue this process and define the ac-
tion of Û(λ) on arbitrary |n〉. For all λ ∈ (0, 1], the operator Û(λ) is unitary by
construction. However, it is easy to see that in the limit of zero λ it becomes a
“shift” operator

Û(0)|i〉 ≡ Ω̂|i〉 = |i + 1〉, ∀i, (40)

whose range does not include the vector |1〉.
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