
Timing Issues in Multi-level Logic Optimization

Giovanni De Micheli
Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

◆Objectives:
▲Timing verification:

▲Delay modeling
▲Critical paths
▲The false path problem

(c) Giovanni De Micheli 3

Timing verification and optimization

◆Verification:
▲Check that a circuit runs at speed

▼ Satisfies I/O delay constraints
▼ Satisfies cycle-time constraints

◆Optimization:
▲Minimum delay

▼ (subject to area constraints)

▲Minimum area
▼ Subject to delay constraints

(c) Giovanni De Micheli 4

Delay modeling

◆Gate delay modeling:
▲Straightforward for bound networks

▼ Cell library models: d = a + b Cap
▼ Cap due to fanout and wiring

▲Approximations for unbound networks
▼ Virtual gates

◆Network delay modeling:
▲Compute signal propagation

▼ Topological methods
▼ Logic/topological methods (false paths)

(c) Giovanni De Micheli 5

Network delay modeling

◆For each vertex vi

◆Propagation delay di :
▲ I/O propagation delays are usually zero

◆Data-ready time ti :
▲ Input data-ready time denote when inputs are available
▲Computed elsewhere by forward traversal

▲ti = di + maxj tj s.t. (vj,vi) e E

(c) Giovanni De Micheli 6

Example

◆Propagation delays:
▲dg = 3; dh = 8; dm = 1; dk = 10; dl = 3

▲dn = 5; dp = 2; dp = 2; dx = 2; dy = 3

(c) Giovanni De Micheli 7

Network delay modeling

◆For each vertex vi :

◆Required data-ready time ti :

▲Specified at the primary outputs

▲Computed elsewhere by backward traversal

▲ ti = minj tj - dj s.t. (vi ,vj) e E

◆Slack si :
▲Difference between required and actual data-ready times

si = tj - ti

(c) Giovanni De Micheli 8

Example

◆Required data-ready times:
▲ tx= 25 and ty= 25

dx=2; dy=3; dq=2; dm=1; dp=2;
dn=5; dl=3; dk=10; dh=8; dg=3;

(c) Giovanni De Micheli 9

Example

◆ sx = 2; sy = 0

◆ tm= 25 - 2 = 23; sm = 23 - 21 = 2

◆ tq= 25 - 3 = 22; sq = 22 - 22 = 0

◆ tl = min {23 - 1;22 - 2} = 20; sl = 20 - 20 = 0

◆ tb= 23 - 1 = 22; sh = 22 - 11 = 11

◆ tk= 20 - 3 = 17; sk = 17 - 13 = 4

◆ tp= 20 - 3 = 17; sp = 17 - 17 = 0

◆ tn= 17 - 2 = 15; sn = 15 - 15 = 0

◆ tb= 15 - 5 = 10; sb = 10 - 10 = 0

◆ tg= min {22 - 11;17 - 10; 17 - 2} = 7; sg = 7 - 3 = 4

◆ ta= 7 - 3 = 4; sa = 4 - 0 = 4

dn=5; dl=3; dk=10; dh=8; dg=3;

dx=2; dy=3; dq=2; dm=1; dp=2;

(c) Giovanni De Micheli 10

Example

(c) Giovanni De Micheli 11

Topological critical path

◆Assume topologic computation of :
▲Data-ready by forward traversal
▲Required data-ready by backward traversal

◆Topological critical path :

▲ Input/output path with zero slacks

▲Any increase in the vertex propagation delay affects the output
data-ready time

◆A topological critical path may be false:
▲No event can propagate along that path

(c) Giovanni De Micheli 12

Example

◆All gates have unit delay

◆All inputs ready at time 0

◆Longest topological path : (va, vc, vd, vy, vz) :

▲ Path delay: 4 units

◆Critical true path: (va, vc, vd, vy) :

▲ Path delay: 3 units

(c) Giovanni De Micheli 13

Sensitizable paths

◆A path in a logic network is sensitizable if an event can
propagate from its tail to its head

◆A critical path is a sensitizable path of maximum weight

◆Only sensitizable paths should be considered

◆Non-sensitizable paths are false and can be discarded

(c) Giovanni De Micheli 14

Sensitizable paths

◆Path:
▲Ordered set of vertices

◆ Inputs to a vertex:
▲Direct predecessors

◆Side-inputs of a vertex:
▲ Inputs not on the path

(c) Giovanni De Micheli 15

Sensitization condition

◆Path: P = (vxo, vx1, … , vxm)

◆An event propagates along P if :

∂fxi / ∂xi-1 = 1 , i = 1, 2, …, m

◆Remarks :
▲Boolean differences are function of the side-inputs and values

on the side-inputs may change

▲Boolean differences must be true at the time that the event
propagates

(c) Giovanni De Micheli 16

Example

◆Path: (va, vc, vd, vy, vz)
▲ ∂fy / ∂d = e = 1 at time 2

▲ ∂fz / ∂y= e� = 1 at time 3

◆ Not dynamically sensitizable because e settles at time 1

(c) Giovanni De Micheli 17

Modes for delay computation

◆Transition mode:

▲ Variables assumed to hold previous values
▼ Model circuit node capacitances

▲ Two test vectors are needed

◆Floating mode:

▲ Circuit is assumed to be memoryless
▼ Variables have unknown value until set by input test vector

▲ Need only one test vector

(c) Giovanni De Micheli 18

Static co-sensitization

◆Assumption:
▲Circuit modeled by AND, OR, INV gates

▲ INV are irrelevant to the analysis

▲Floating mode

◆Controlling values:
▲0 for AND gate

▲1 for OR gate

◆Gate has controlled value when controlling value is
present

(c) Giovanni De Micheli 19

Static co-sensitization

◆Path: P = (vxo, vx1, ……. , vxm)

◆A vector statically co-sensitizes a path to 1 (or to 0) if :

▲ xm = 1 (or 0) and

▲ vxi-1 has a controlling value whenever vxi has a controlled value

◆Necessary condition for a path to be true

◆Sufficient conditions are based on the timing of the signal

(c) Giovanni De Micheli 20

False path detection test

◆For all input vectors, one of the following is true:
▲(1) A gate is controlled and

▼ the path provides a non-controlling value
▼ a side-input provides a controlling value

▲(2) A gate is controlled and
▼ The path and a side-input have controlling values
▼ The side-input presents the controlling value first

▲(3) A gate is not controlled and
▼ A side-input presents the non-controlling value last

(c) Giovanni De Micheli 21

Example

◆Path: (va, vc, vd , vy, vz)

◆For a = 0, b = 0 :

▲ Condition (1) occurs at the OR gate
◆ For a = 0, b = 1 :

▲ Condition (2) occurs at the AND gate
◆ For a = 1, b = 0 :

▲ Condition (2) occurs at the OR gate
◆ For a = 1, b = 1 :

▲ Condition (1) occurs at the AND gate

(c) Giovanni De Micheli 22

Important problems

◆Check if circuit works at speed t :
▲Verify that all true paths are faster than t

▲Show that all paths slower than t are false

◆Compute groups of false paths

◆Compute critical true path:
▲Binary search for values of t

▲Show that all paths slower that t are false

