Sequential Logic Synthesis

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

Module 1

Objective

- ▲ Motivation and assumptions for sequential synthesis
- ▲ Finite-state machine design and optimization

Synchronous logic circuits

Interconnection of

▲ Combinational logic gates

▲ Synchronous delay elements ▼ Edge-triggered, master/slave

Assumptions

No direct combinational feedback

▲ Single-phase clocking

Extensions to

▲ Multiple-phase clocking

Gated latches

Modeling synchronous circuits

Circuit are modeled in hardware languages

- ▲ Circuit model may be directly related to FSM model
 - ▼ Description by: switch-case
- ▲ Circuit model may be structural
 - Explicit definition of registers

Sequential circuit models can be generated from high-level models

▲ Control generation in high-level synthesis

Modeling synchronous circuits

State-based model:

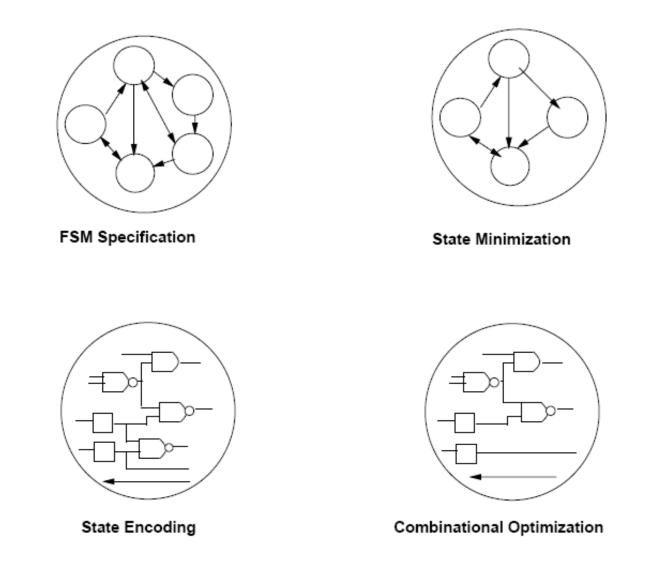
- ▲ Model circuits as finite-state machines (FSMs)
- ▲ Represent by state tables/diagrams
- ▲ Apply exact/heuristic algorithms for:
 - ▼ State minimization
 - ▼ State encoding

Structural model

▲ Represent circuit by synchronous logic network

- ▲ Apply
 - ▼ Retiming
 - ▼ Logic transformations

State-based optimization



Modeling synchronous circuits

Advantages and disadvantages of models

- State-based model
 - ▲ Explicit notion of state
 - Implicit notion of area and delay

Structural model

- ▲ Implicit notion of state
- Explicit notion of area and delay

Transition from a model to another is possible

▲ State encoding

▲ State extraction

(c) Giovanni De Micheli

Sequential logic optimization

Typical flow

▲ Optimize FSM state model first

- ▼Reduce complexity of the model
- ▼E.g., apply state minimization
- ▼ Correlates to area reduction

▲ Encode states and obtain a structural model

- ▼Apply retiming and transformations
- ▼Achieve performance enhancement
- ▲Use state extraction for verification purposes

- A set of primary input patterns X
- A set of primary output patterns Y
- A set of states S
- A state transition function: δ : X × S \rightarrow S
- An output function:
 - **\land** λ : X \times S \rightarrow Y for Mealy models
 - **\land** λ : $S \rightarrow Y$ for Moore models

Classic problem

- ▲ Exact and heuristic algorithms are available
- ▲ Objective is to reduce the number of states and hence the area
- Completely-specified finite-state machines
 - ▲ No don 't care conditions
 - ▲ Polynomial-time solutions
- Incompletely-specified finite-state machines
 - Unspecified transitions and/or outputs
 - ▼ Usual case in synthesis
 - ▲ Intractable problem:
 - ▼ Requires binate covering

State minimization for completely-specified FSMs

Equivalent states:

▲ Given any input sequence, the corresponding output sequence match

Theorem:

- ▲ Two states are equivalent if and only if:
 - ▼ They lead to identical outputs and their next-states are equivalent

Equivalence is transitive

- Partition states into equivalence classes
- ▲ Minimum finite-state machine is unique

State minimization for completely-specified FSMs

Stepwise partition refinement:

▲ Initially:

- ▼ All states in the same partition block
- ▲ Iteratively:
 - ▼ Refine partition blocks
- ▲ At convergence:
 - Partition blocks identify equivalent states

Refinement can be done in two directions

- ▲ Transitions *from* states in block to other states
 - ▼ Classic method. Quadratic complexity
- ▲ Transitions *into* states of block under consideration
 - ▼ Inverted tables. Hopcroft's algorithm.

Initial partition:

▲П₁: States belong to the same block when outputs are the same for any input

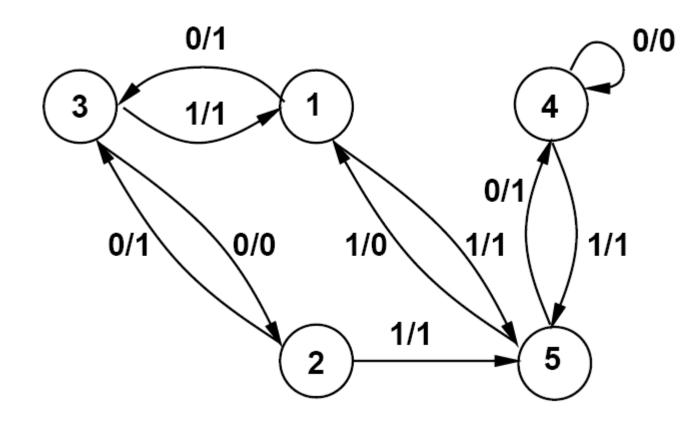
Iteration:

▲ Π_{k+1} : States belong to the same block if they were previously in the same block and their next states are in the same block of Π_k for any input

Convergence:

$\mathbf{A}\mathbf{\Pi}_{k+1} = \mathbf{\Pi}_k$

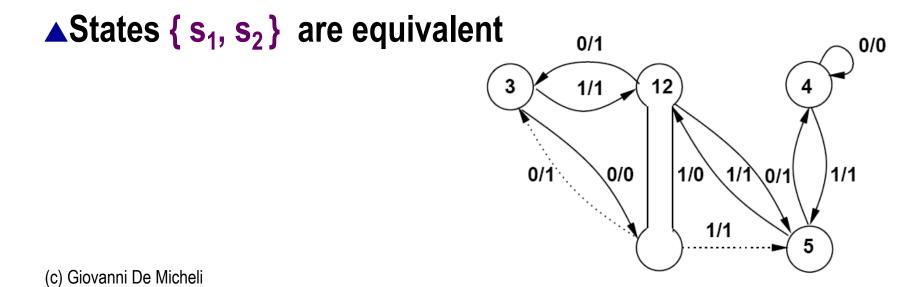
INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	s_5	1
0	<i>s</i> ₂	<i>s</i> 3	1
1	<i>s</i> ₂	s_5	1
0	<i>s</i> 3	<i>s</i> ₂	0
1	<i>s</i> 3	s_1	1
0	s_4	s_4	0
1	s_4	<i>s</i> 5	1
0	s_5	s_4	1
1	s_5	s_1	0



- $\mathbf{A}\Pi_1 = \{ \{ \mathbf{s}_1, \mathbf{s}_2 \}, \{ \mathbf{s}_3, \mathbf{s}_4 \}, \{ \mathbf{s}_5 \} \}$

$\mathbf{A} \Pi_2$ is a partition into equivalence classes

▲No further refinement is possible



State minimization for incompletely-specified finite-state machines

Applicable input sequences

▲ All transitions are specified

Compatible states

Given any applicable input sequence, the corresponding output sequence match

Theorem:

▲ Two states are compatible if and only if:

- ▼ They lead to identical outputs
 - (when both are specified)
- ▼ And their next state is compatible
 - (when both are specified)

- Compatibility is not an equivalence relation
- Minimum finite-state machine is not unique
- Implication relation make the problem intractable
 - ▲ Two states may be compatible, subject to other states being compatible.
 - ▲ Implications are binate satisfiability clauses
 - ▼ a -> b = a'+b

INPUT	STATE	N-STATE	OUTPUT
0	s_1	<i>s</i> 3	1
1	s_1	<i>s</i> 5	*
0	^s 2	<i>s</i> ₃	*
1	<i>s</i> ₂	<i>s</i> ₅	1
0	<i>s</i> 3	^s 2	0
1	83	s_1	1
0	84	<i>s</i> ₄	0
1	84	<i>s</i> ₅	1
0	<i>s</i> ₅	\$4	1
1	<i>s</i> ₅	s_1	0

Trivial method

Consider all possible don 't care assignments

- ▲ n don 't care imply
 - ▼ 2ⁿ completely specified FSMs
 - ▼ 2ⁿ solutions

Example:

▲ Replace * by 1

 $\mathbf{\nabla} \Pi_1 = \{ \{ s_1, s_2 \}, \{ s_3 \}, \{ s_4 \}, \{ s_5 \} \}$

▲ Replace * by 0

$$\mathbf{v}\Pi_1 = \{\{s_1, s_5\}, \{s_2, s_3, s_4\}\}$$

Compatibility and implications Example

Compatible states {s ₁ , s ₂ }
If {s ₃ , s ₄ } are compatible
A Then $\{s_1, s_5\}$ are also compatible
Incompatible states {s ₂ , s ₅ }

INPUT	STATE	N-STATE	OUTPUT
0	s_1	⁸ 3	1
1	s_1	⁸ 5	*
0	^s 2	⁸ 3	*
1	^s 2	⁸ 5	1
0	<i>s</i> ₃	⁸ 2	0
1	<i>s</i> 3	s_1	1
0	84	84	0
1	84	⁸ 5	1
0	<i>s</i> ₅	84	1
1	s ₅	s_1	0

TNIDL

Compatible pairs:

- $\blacktriangle \{ \mathbf{S}_1, \, \mathbf{S}_2 \}$
- $\blacktriangle \{ \mathtt{S}_1, \, \mathtt{S}_5 \} \leftarrow \{ \mathtt{S}_3, \, \mathtt{S}_4 \}$
- $\blacktriangle \{ s_2, s_4 \} \leftarrow \{ s_3, s_4 \}$
- $\blacktriangle \{ \textbf{s}_2, \, \textbf{s}_3 \} \leftarrow \{ \textbf{s}_1, \, \textbf{s}_5 \}$
- $\blacktriangle \{s_3, s_4\} \leftarrow \{s_2, s_4\} \ U \ \{s_1, s_5\}$

Incompatible pairs

- **▲** {**S**₂, **S**₅}
- ▲ {s₃, s₅}
- **▲** {**s**₁, **s**₄}
- **▲** {**s**₄, **s**₅}

▲ {**s**₁, **s**₃}

INPOT	STATE	N-STATE	001901
0	s_1	^s 3	1
1	s_1	s5	*
0	^s 2	^s 3	*
1	^s 2	^s 5	1
0	<i>s</i> 3	^s 2	0
1	<i>s</i> 3	s_1	1
0	84	84	0
1	<i>s</i> 4	^s 5	1
0	<i>s</i> 5	<i>s</i> ₄	1
1	<i>s</i> 5	s_1	0

NSTATE

- A class of compatible states is such that all state pairs are compatible
- A class is maximal

▲ If not subset of another class

Closure property

A set of classes such that all compatibility implications are satisfied

The set of maximal compatibility classes

- ▲ Has the closure property
- ▲ May not provide a minimum solution

Maximum compatibility classes

• Example:

 $\{ \mathbf{S}_1, \mathbf{S}_2 \}$ $\{ \mathbf{S}_1, \mathbf{S}_5 \} \leftarrow \{ \mathbf{S}_3, \mathbf{S}_4 \}$ $\{ \mathbf{S}_2, \mathbf{S}_3, \mathbf{S}_4 \} \leftarrow \{ \mathbf{S}_1, \mathbf{S}_5 \}$

Cover with all MCC has cardinality 3

Exact problem formulation

Prime compatibility classes:

▲ Compatibility classes having the property that they are not subset of other classes implying the same (or subset) of classes

Compute all prime compatibility classes

Select a minimum number of prime classes

- Such that all states are covered
- ▲ All implications are satisfied
- Exact solution requires binate cover
- Good approximation methods exists

Stamina

• Example:

 $\{ s_1, s_2 \}$ $\{ s_1, s_5 \} \leftarrow \{ s_3, s_4 \}$ $\{ s_2, s_3, s_4 \} \leftarrow \{ s_1, s_5 \}$

Minimum cover:

- $\blacktriangle \{s_1, s_5\}, \{s_2, s_3, s_4\}$
- ▲Minimun cover has cardinality 2

Determine a binary encoding of the states

- ▲ Optimizing some property of the representation (mainly area)
- Two-level model for combinational logic
 - ▲ Methods based on symbolic optimization ▼ Minimize a symbolic cover of the finite state machine ▼ Formulate and solve a constrained encoding problem

Multiple-level model

Some heuristic methods that look for encoding which privilege cube and/or kernel extraction

Weak correlation with area minimality

INPUT	P-STATE	N-STATE	OUTPUT
0	s1	s3	0
1	s1	s3	0
0	s2	s3	0
1	s2	s1	1
0	s3	s5	0
1	s3	s4	1
0	s4	s2	1
1	s4	s3	0
0	s5	s2	1
1	s5	s5	0

• Minimum symbolic cover:

*	s1s2s4	s3	0
1	s2	s1	1
0	s4s5	s2	1
1	s3	s4	1

• Encoded cover :

*	1**	001	0
1	101	111	1
0	*00	101	1
1	001	100	1

Summary finite-state machine optimization

- FSM optimization has been widely researched
 - ▲ Classic and newer approaches
- State minimization and encoding correlate to area reduction
 - ▲ Useful, but with limited impact
- Performance-oriented FSM optimization has mixed results
 - ▲ Performance optimization is usually done by structural methods

Module 2

Objective

▲ Structural representation of sequential circuits

▲ Retiming

▲ Extensions

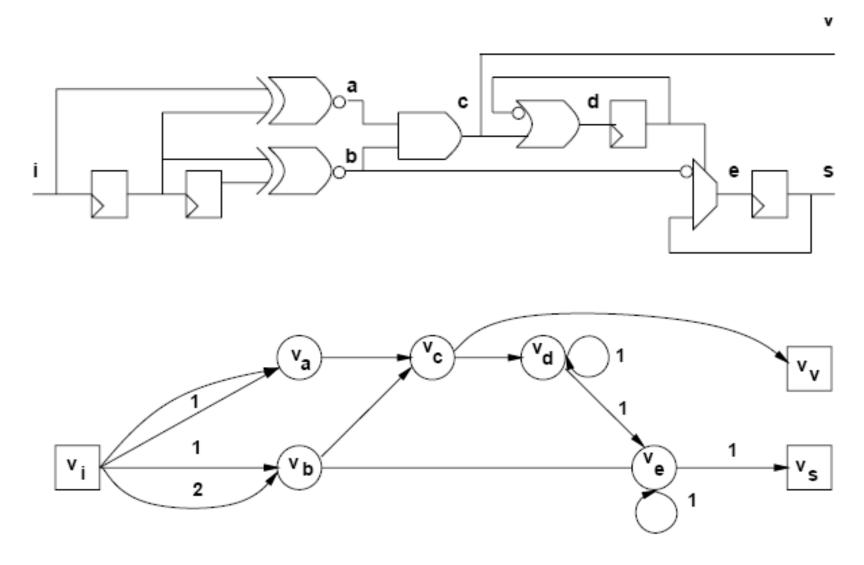
Structural model for sequential circuits

Synchronous logic network

- ▲ Variables
- Boolean equations
- Synchronous delay annotation

Synchronous network graph

- ▲ Vertices \leftrightarrow equations \leftrightarrow I/O, gates
- **A** Edges \leftrightarrow dependencies \leftrightarrow nets
- ▲ Weights \leftrightarrow synchronous delays \leftrightarrow registers



$$a^{(n)} = i^{(n)} \overline{\oplus} i^{(n-1)}$$

$$b^{(n)} = i^{(n-1)} \overline{\oplus} i^{(n-2)}$$

$$c^{(n)} = a^{(n)}b^{(n)}$$

$$d^{(n)} = c^{(n)} + d'^{(n-1)}$$

$$e^{(n)} = d^{(n)}e^{(n-1)} + d'^{(n)}b'^{(n)}$$

$$v^{(n)} = c^{(n)}$$

$$s^{(n)} = e^{(n-1)}$$

- $a = i \overline{\oplus} i$ @1
- $b = i@1 \overline{\oplus} i@2$
- c = a b

$$d = c + d@1'$$

- e = d e @1 + d' b'
- v = c
- s = e@1

Approaches to sequential synthesis

Optimize combinational logic only

- ▲ Freeze circuit at register boundary
- Modify equation and network graph topology

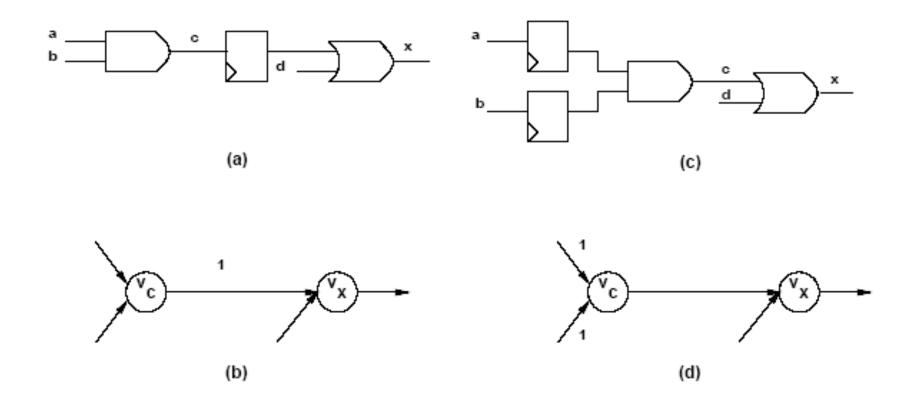
Retiming

- ▲ Move register positions. Change weights on graph
- Preserve network topology

Synchronous transformations

- Blend combinational transformations and retiming
- ▲ Powerful, but complex to use

Example of local retiming



Retiming

Global optimization technique

- Change register positions
 - ▲Affects area:
 - ▼ Retiming changes register count
 - ▲Affects cycle-time
 - ▼ Changes path delays between register pairs

Retiming algorithms have polynomial-time complexity

Retiming assumptions

Delay is constant at each vertex

▲ No fanout delay dependency

Graph topology is invariant

▲ No logic transformations

Synchronous implementation

- ▲ Cycles have positive weights
 - ▼ Each feedback loop has to be broken by at least one register
- Edges have non-negative weights
 - ▼ Physical registers cannot anticipate time

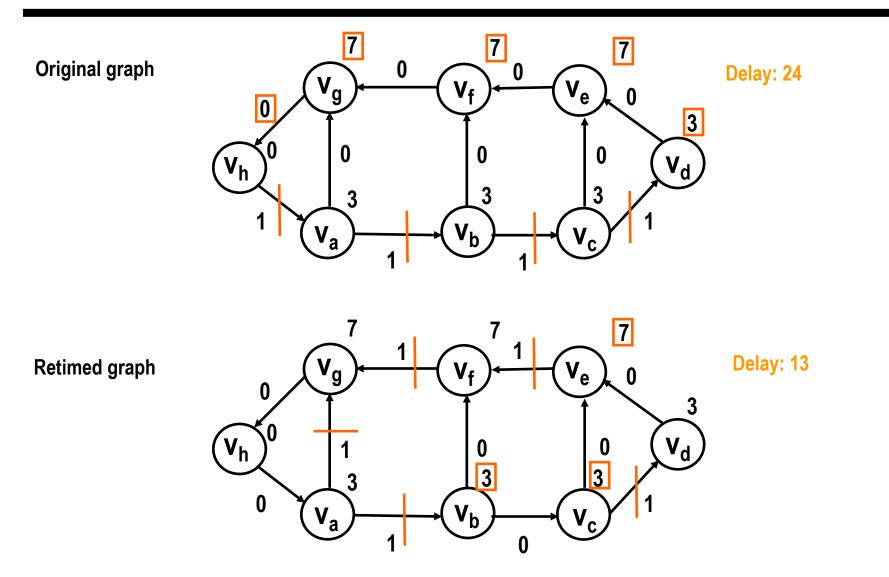
Consider topological paths

▲ No false path analysis

Retiming

- Retiming of a vertex v
 - ▲ Integer r_v
 - ▲ Registers moved from output to input: r_v positive
 - ▲ Registers moved from input to output: r_v negative
- Retiming of a network
 - ▲ Vector whose entries are the retiming at various vertices
- A family of I/O equivalent networks are specified by:
 - ▲ The original network
 - ▲ A set of vectors satisfying specific constraints
 - ▼ Legal retiming

Example



Definitions and properties

Definitions:

- \mathbf{A} w(v_i, v_j) weight on edge (v_i, v_j)
- $(v_i, ..., v_i)$ path from v_i to v_i
- \mathbf{A} w(v_i, ..., v_i) weight on path from v_i to v_i
- \mathbf{A} d($\mathbf{v}_i, ..., \mathbf{v}_i$) combinational delay on path from \mathbf{v}_i to \mathbf{v}_i

Properties:

- ▲ Retiming of an edge (v_i, v_i)
 - $\mathbf{v} \quad \hat{\mathbf{w}}_{ii} = \mathbf{w}_{ii} + \mathbf{r}_i \mathbf{r}_i$
- A Retiming of a path ($v_i, ..., v_i$)
 - \mathbf{v} $\hat{\mathbf{w}}$ ($\mathbf{v}_i, ..., \mathbf{v}_i$) = w ($\mathbf{v}_i, ..., \mathbf{v}_i$) + $\mathbf{r}_i \mathbf{r}_i$
- Cycle weights are invariant

Legal retiming

A retiming vector is legal iff:

▲ No edge weight is negative

 $\mathbf{v} \ \hat{\mathbf{w}}_{ij} (\mathbf{v}_i, \mathbf{v}_j) = \mathbf{w}_{ij} (\mathbf{v}_i, \mathbf{v}_j) + \mathbf{r}_j - \mathbf{r}_i \ge 0$ for all i, j

- **\blacktriangle** Given a clock period ϕ :
- ▲ Each path (v_i , ..., v_j) with d (v_i , ..., v_j) > ϕ has at least one register:

 $\mathbf{v} \ \hat{\mathbf{w}} \ (\mathbf{v}_i, ..., \mathbf{v}_j) = \mathbf{w} \ (\mathbf{v}_i, ..., \mathbf{v}_j) + \mathbf{r}_j - \mathbf{r}_i \ge 1$ for all i, j

 \blacktriangle Equivalently, each combinational path delay is less than ϕ

Refined analysis

Least-register path

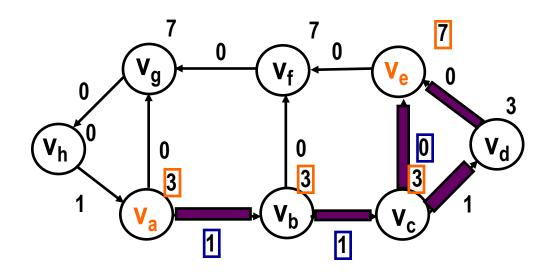
 $\mathbf{A} \mathbf{W} (\mathbf{v}_i, \mathbf{v}_j) = \min \mathbf{w} (\mathbf{v}_i, ..., \mathbf{v}_j)$ over all paths between \mathbf{v}_i and \mathbf{v}_j

Critical delay:

▲ D $(v_i, v_j) = \max d (v_i, ..., v_j)$ over all paths between v_i and v_j with weight W (v_i, v_j)

There exist a vertex pair (v_i, v_j) whose delay D (v_i, v_j) bounds the cycle time

Example



- •Vertices: v_a, v_e
- •Paths: (v_a, v_b, v_c, v_e) and $(v_a, v_b, v_c, v_d, v_e)$
- •W(v_a, v_e) = 2

•D(v_a, v_e) = 16

Minimum cycle-time retiming problem

- Find the minimum value of the clock period φ such that there exist a retiming vector where:
 - ▲ $\mathbf{r}_i \mathbf{r}_j \leq \mathbf{w}_{ij}$ for all $(\mathbf{v}_i, \mathbf{v}_j)$

▼ All registers are implementable

▲ $r_i - r_j \le W(v_i, v_j) - 1$ for all (v_i, v_j) such that D $(v_i, v_j) > \phi$

▼ All timing path constraints are satisfied

Solution

- **ightarrow** Given a value of $m \phi$
- ▲ Solve linear constraints A r ≤ b
 - Mixed integer-linear program

▲ A set of inequalities has a solution if the constraint graph has no positive cycles

- Bellman-Ford algorithm compute longest path
- ▲ Iterative algorithm
 - ▼ Relaxation

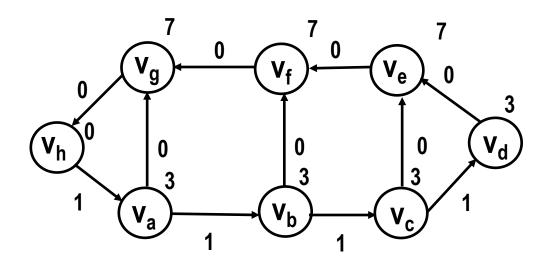
Minimum cycle-time retiming algorithm

- Compute all pair path weights W (v_i, v_j) and delays D (v_i, v_j)
 - ▲ Warshall-Floyd algorithms with complexity O(|V|³)
- ♦ Sort the elements of D (v_i, v_j) in decreasing order
 - \blacktriangle Because an element of D is the minimum ϕ
- Binary search for a φ in D (v_i, v_j) such that
 - ▲ There exists a legal retiming
 - ▲ Bellman-Ford algorithm with complexity O(|V|³)

Remarks

- ▲ Result is a global optimum
- ▲ Overall complexity is O(|V|³ log |V|)

Example: original graph

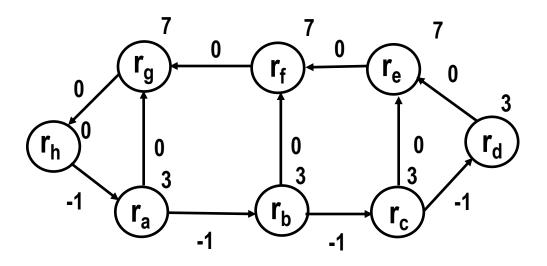


Constraints (first type):

• $r_a - r_b \le 1$ or equivalently $r_b \ge r_a - 1$

•
$$r_c - r_b \le 1$$
 or equivalently $r_c \ge r_b - 1$

Example: constraint graph



•Constraints (first type):

•
$$r_a - r_b \le 1$$
 or equivalently $r_b \ge r_a - 1$

•
$$r_c - r_b \le 1$$
 or equivalently $r_c \ge r_b - 1$

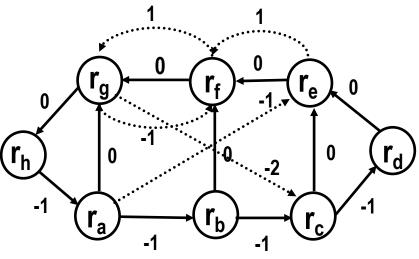
(c) Giovanni De Micheli

Example

- Sort elements of D:
 - **3**3,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
- Select φ = 19
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - Pass: legal retiming found
- Select φ = 13
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - Pass: legal retiming found
- Select φ < 13
 - **▲** 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
 - ▲ Fail: no legal retiming found
- Fastest cycle time is ϕ = 13. Corresponding retiming vector is used

Example $\varphi = 13$

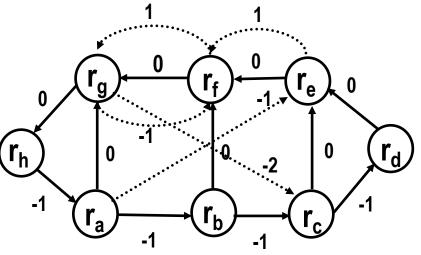
 $r_a - r_e \le 2 - 1$ or equivalently $r_e \ge r_a - 1$ $r_e - r_f \le 0 - 1$ or equivalently $r_f \ge r_e + 1$ $r_f - r_g \le 0 - 1$ or equivalently $r_g \ge r_f + 1$ $r_g - r_f \le 2 - 1$ or equivalently $r_f \ge r_g - 1$ $r_g - r_c \le 3 - 1$ or equivalently $r_c \ge r_g - 2$



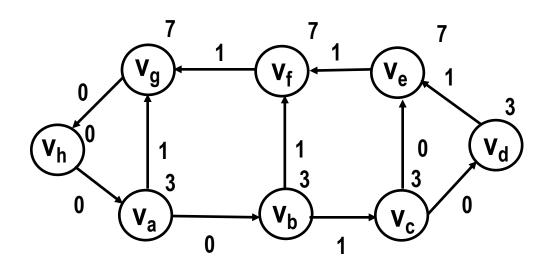
Example $\phi = 13$

◆Constraint graph:
 ◆Longest path from source

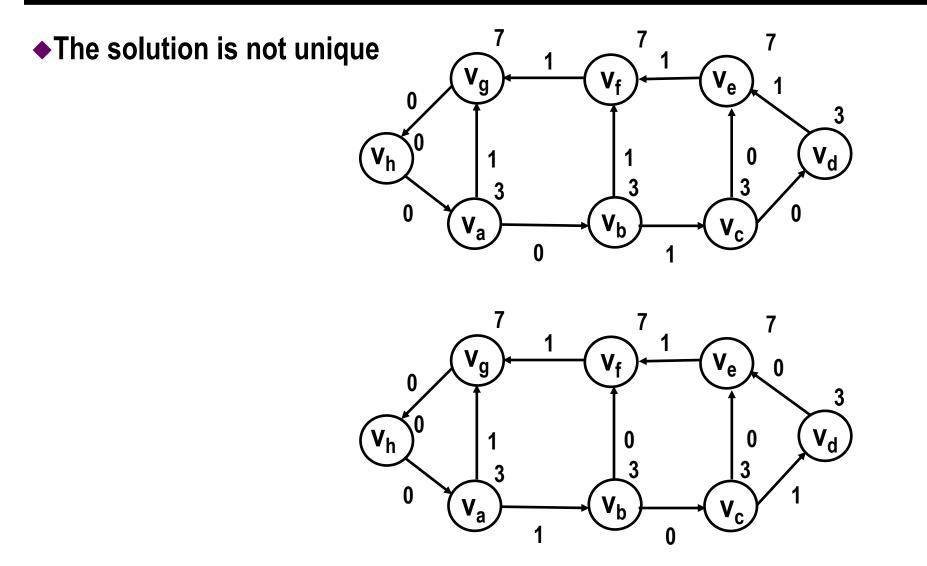
 -1



Retimed graph



Example ϕ = 13



Most common algorithm for retiming

- ▲ Avoids storage of matrices W and D
- ▲ Applicable to large circuits

Rationale

- **\triangle** Search for decreasing ϕ in fixed step
 - **v** Look for values of ϕ compatible with peripheral circuits
- ▲ Use efficient method to determine legality
 - ▼ Network graph is often very sparse
- ▲ Can be coupled with topological timing analysis

- Start with a given cycle-time ϕ
- Look for paths with excessive delays
- Make such paths shorter
 - ▲ By bringing the terminal register closer
 - ▲ Some other paths may become longer
 - ▲ Namely, those path whose tail has been moved
- Use an iterative approach

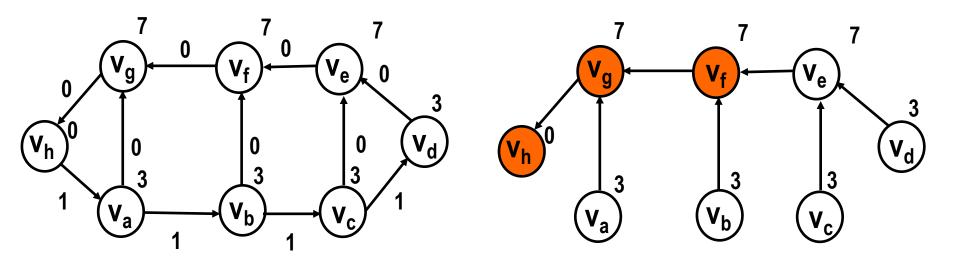
Define data ready time at each node

- ▲ Total delay from register boundary
- Iterative approach
 - **A** Find vertices with *data ready* > ϕ
 - ▲ Retime these vertices by 1

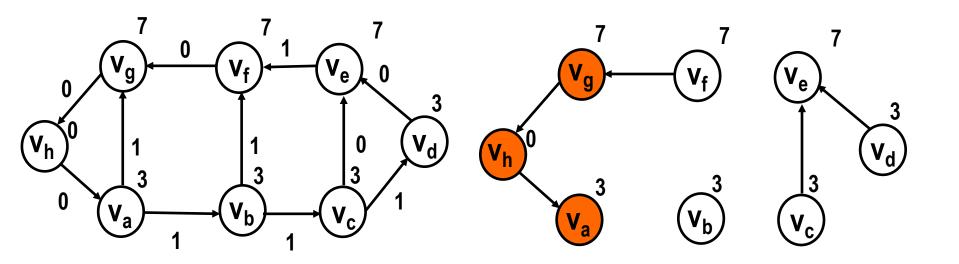
Algorithm properties

- ▲ If at some iteration there is no vertex with *data ready* > ϕ , a legal retiming has been found
- ▲ If a legal retiming is not found in |V| iterations, then no legal retiming exists for that ϕ

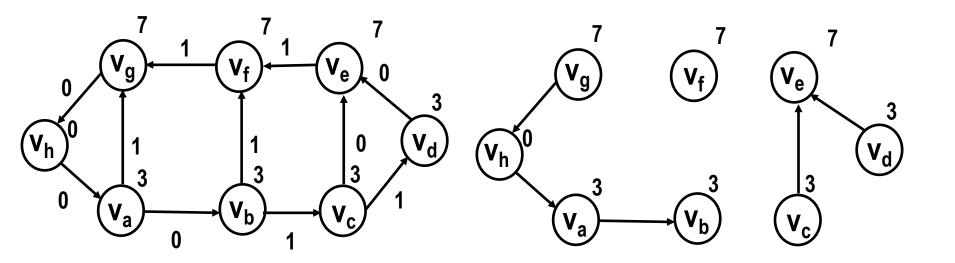
Example φ = 13 iteration = 1



Example $\varphi = 13$ iteration = 2



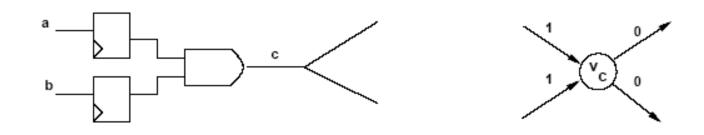
Example φ = 13 iteration = 3

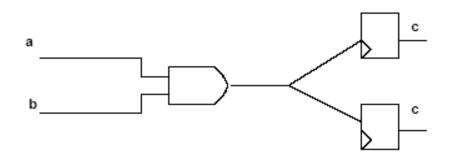


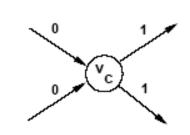
Retiming for minimum area

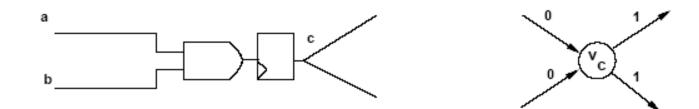
- Find a retiming vector that minimizes the number of registers
- Simple area modeling
 - ▲ Every edge with a positive weight denotes registers
 - ▲ Total register area is proportional to the sum of all weights
- Register sharing model
 - Every set of positively-weighted edges with common tail is realized by a shift registers with taps
 - ▲ Total register area is proportional to the sum, over all vertices, of the maxima of weights on outgoing edges

Example









- Register variation at node v
 - \land r_v (indegree(v) outdegree(v))
- Total area variation:
 - $\Delta \Sigma r_v$ (indegree(v) outdegree(v))
- Area minimization problem:
 - $Min \Sigma r_v (indegree(v) outdegree(v))$
 - ▲ Such that $\mathbf{r}_i \mathbf{r}_j \leq \mathbf{w}_{ij}$ for all $(\mathbf{v}_i, \mathbf{v}_j)$

Area recovery under timing constraint

- ▲ Min Σ r_v (indegree(v) outdegree(v)) such that:
- $\mathbf{A}\mathbf{r}_{i} \mathbf{r}_{j} \leq \mathbf{w}_{ij}$ for all ($\mathbf{v}_{i}, \mathbf{v}_{j}$) and
- $\mathbf{A} \mathbf{r}_i \mathbf{r}_j \le W (\mathbf{v}_i, \mathbf{v}_j) 1 \text{ for all } (\mathbf{v}_i, \mathbf{v}_j \text{ }) \text{ such that } D (\mathbf{v}_i, \mathbf{v}_j) > \phi$

Common implementation is by integer linear program

Problem can alternatively be transformed into a matching problem and solved by Edmonds-Karp algorithm

Register sharing

▲ Construct auxiliary network and apply this formulation.

Auxiliary network construction takes into account register sharing (c) Giovanni De Micheli

Other problems related to retiming

Retiming pipelined circuits

- ▲ Balance pipe stages by using retiming
- ▲ Trade-off latency versus cycle time

Peripheral retiming

- ▲ Use retiming to move registers to periphery of a circuit
- Restore registers after optimizing combinational logic

Wire pipelining

- ▲ Use retiming to pipeline interconnection wires
- Model sequential and combinational macros
- Consider wire delay and buffering

Sequential optimization technique for:

- ▲ Cycle time or register area
- Applicable to
 - ▲ Synchronous logic networks
 - Architectural models of data paths
 - ▼ Vertices represent complex (arithmetic) operators
 - Exact algorithm in polynomial time
- Extension and issues
 - Delay modeling
 - Network granularity

Module 3

Objective

▲ Relating state-based and structural models

▲ State extraction

Relating the sequential models

State encoding

▲ Maps a state-based representation into a structural one

State extraction

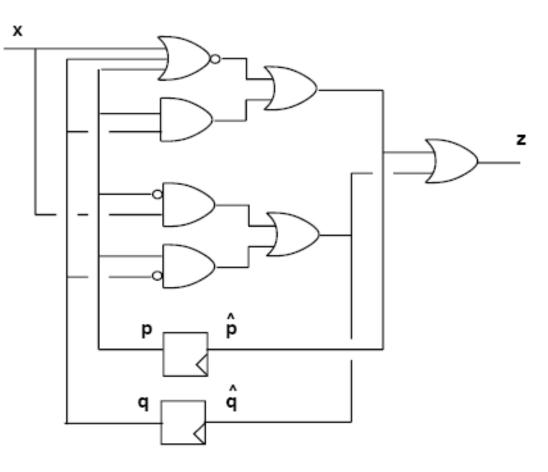
▲ Recovers the state information from a structural model

Remark

- ▲ A circuit with n registers may have 2ⁿ states
- ▲ Unreachable states

State extraction

- State variables: p, q
- Initial state p=0; q=0;
- Four possible states



State extraction

Reachability analysis

▲ Given a state, determine which states are reachable for some inputs

▲ Given a state subset, determine the reachable state subset

▲ Start from an initial state

▲ Stop when convergence is reached

Notation:

▲ A state (or a state subset) is represented by an expression over the state variables

Implicit representation

Reachability analysis

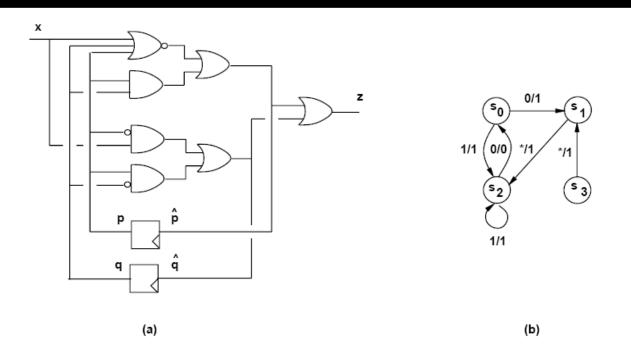
- State transition function: f
- Initial state: r₀
- States reachable from r₀
 - ▲ Image of r₀ under f
- States reachable from set r_k
 - ▲ Image of r_k under f
- Iteration
 - $\mathbf{A}\mathbf{r}_{k+1} = \mathbf{r}_k \mathbf{U}$ (image of \mathbf{r}_k under f)

Convergence

$$\mathbf{A}\mathbf{r}_{k+1} = \mathbf{r}_k$$
 for some k

(c) Giovanni De Micheli

Example



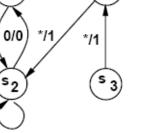
• Initial state $r_0 = p'q'$.

• The state transition function
$$\mathbf{f} = \begin{bmatrix} x'p'q' + pq \\ xp' + pq' \end{bmatrix}$$

(c) Giovanni De Micheli

Example

Image of p' q' under f: ▲ When (p = 0 and q = 0), f reduces to [x' x]^T ▲ Image is $[01]^T$ U $[10]^T$ States reachable from the reset state: (p = 1; q = 0) and (p = 0; q = 1) $Ar_1 = p'q' + pq' + p'q = p' + q'$ ◆States reacheable from r₁: ▲[00]^TU[01]^TU[10]^T Convergence: $A s_0 = p' q'; s_1 = pq'; s_2 = p' q;$ 1/1



0/1

s0

Completing the extraction

Determine state set

▲ Vertex set

Determine transitions and I/O labels

- ▲ Edge set
- ▲ Inverse image computation
- ▲ Look at conditions that lead into a given state

Example

х \bullet Transition into $s_0 = p' q'$ A Patterns that make $f = [0 0]^T$ are: (x'p'q' + pq)'(xp' + pq')' = x'p'q**\land** Transition from state $s_2 = p' q$ under q input x' s0 **s1** s₀ ▲ And so on ... 0 1/1 0/0 s2 s2 1/1

z

q

0/1

*/1

s,

s 3,

*/1

Remarks

Extraction is performed efficiently with implicit methods

♦ Model transition relation x (i,x,y) with BDDs

▲ This function relates possible triples:

(input, current_state, next_state)

▲ Image of r_k:

 \bullet S_{i,x} (χ (i,x,y) r_k (x))

 \blacksquare Where r_k depends on inputs x

▲ Smoothing on BDDs can be achieved efficiently

Summary

State extraction can be performed efficiently to:

- ▲ Apply state-based optimization techniques
- ▲ Apply verification techniques

State extraction is based on forward and backward state space traversal:

- ▲ Represent state space implicitly with BDDs
- ▲ Important to manage the space size, which grows exponentially with the number of registers