Sequential Logic Synthesis

Giovanni De Micheli

Integrated Systems Centre
EPF Lausanne

L W)
\)

Centre Si
““ INntegra Sy~

L
AN
u
I“
L -d s Ce

) “ ted Systems ntre

s

(g

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli - All rights reserved

Module 1

¢ Objective
A Motivation and assumptions for sequential synthesis

AFinite-state machine design and optimization

(c) Giovanni De Micheli

Synchronous logic circuits

¢ Interconnection of

A Combinational logic gates

A Synchronous delay elements
v Edge-triggered, master/slave

¢ Assumptions

ANo direct combinational feedback
A Single-phase clocking

¢ Extensions to

A Multiple-phase clocking
A Gated latches

(c) Giovanni De Micheli

Modeling synchronous circuits

¢ Circuit are modeled in hardware languages

A Circuit model may be directly related to FSM model
v Description by: switch-case

A Circuit model may be structural
v Explicit definition of registers

¢ Sequential circuit models can be generated from high-level
models

A Control generation in high-level synthesis

(c) Giovanni De Micheli 4

Modeling synchronous circuits

& State-based model:

A Model circuits as finite-state machines (FSMs)
ARepresent by state tables/diagrams

A Apply exact/heuristic algorithms for:
v State minimization
v State encoding

¢ Structural model

A Represent circuit by synchronous logic network
AApply

v Retiming
v Logic transformations

(c) Giovanni De Micheli

State-based optimization

(c) Giovanni De Micheli

Modeling synchronous circuits

¢ Advantages and disadvantages of models
¢ State-based model

AEXxplicit notion of state
Almplicit notion of area and delay

¢ Structural model
Almplicit notion of state
AEXxplicit notion of area and delay
¢ Transition from a model to another is possible

A State encoding
A State extraction

(c) Giovanni De Micheli

Sequential logic optimization

¢ Typical flow

AOptimize FSM state model first

v Reduce complexity of the model
vE.g., apply state minimization
v Correlates to area reduction

AEncode states and obtain a structural model

v Apply retiming and transformations
v Achieve performance enhancement

AUse state extraction for verification purposes

(c) Giovanni De Micheli

Formal finite-state machine model

¢ A set of primary input patterns X

¢ A set of primary output patterns Y

¢ A set of states S

A state transition function: 8: X X S — S

¢ An output function:
AN X X S—Y for Mealy models

A A\: S — Y for Moore models

(c) Giovanni De Micheli

State minimization

¢ Classic problem
A Exact and heuristic algorithms are available
A Objective is to reduce the number of states and hence the area

¢ Completely-specified finite-state machines
ANo don 't care conditions
A Polynomial-time solutions

¢ Incompletely-specified finite-state machines

A Unspecified transitions and/or outputs
v Usual case in synthesis

Alntractable problem:
v Requires bhinate covering

(c) Giovanni De Micheli

10

State minimization
for completely-specified FSMs
¢ Equivalent states:

A Given any input sequence, the corresponding output sequence match

¢ Theorem:

A Two states are equivalent if and only if:
v They lead to identical outputs and their next-states are equivalent

¢ Equivalence is transitive

A Partition states into equivalence classes

A Minimum finite-state machine is unique

(c) Giovanni De Micheli "

State minimization

for completely-specified FSMs

¢ Stepwise partition refinement:
A Initially:
v All states in the same partition block

A lteratively:
v Refine partition blocks

A At convergence:
v Partition blocks identify equivalent states

¢ Refinement can be done in two directions

A Transitions from states in block to other states
v Classic method. Quadratic complexity

A Transitions into states of block under consideration
v Inverted tables. Hopcroft’ s algorithm.

(c) Giovanni De Micheli 12

Example of refinement

¢ Initial partition:

All, : States belong to the same block when outputs are
the same for any input

¢ lteration:

All, ., : States belong to the same block if they were
previously in the same block and their next states are in
the same block of I'l, for any input

¢Convergence:
Al =T,

(c) Giovanni De Micheli 13

Example

INPUT | STATE | N-STATE | OUTPUT
0 $1 $3 1
1 $1 S5 1
0 $2 $3 1
1 82 S5 1
0 53 Sl 0
1 53 51 1
0 S4 S4 0
1 S4 S5 1
0 S5 S4 1
1 S5 $1 0

(c) Giovanni De Micheli

14

(c) Giovanni De Micheli

Example

15

Example

0“1 ={{S1, SZ}! {33584}!{85}}

o, ={{sy, s}, {s3},{ss}, {ss5}}
o1, is a partition into equivalence classes

ANo further refinement is possible

AStates {s,, s,} are equivalent o/

(c) Giovanni De Micheli

11

0/0

_ State minimization _
for incompletely-specified finite-state machines

¢ Applicable input sequences

AAll transitions are specified

¢ Compatible states

A Given any applicable input sequence, the corresponding output
sequence match

¢ Theorem:

A Two states are compatible if and only if:

v They lead to identical outputs
+ (when both are specified)

v And their next state is compatible
+ (when both are specified)

(c) Giovanni De Micheli

17

State minimization
for incompletely-specified finite-state machines

¢ Compatibility is not an equivalence relation
¢ Minimum finite-state machine is not unique

¢ Implication relation make the problem intractable

A Two states may be compatible, subject to other states being
compatible.

Almplications are binate satisfiability clauses
v a->b =a+b

(c) Giovanni De Micheli

18

Example

INPUT [STATE [N-STATE [OUTPUT
0 $1 83 1
1 $1 85 *
0 89 83 *
1 89 85 1
0 83 89 0
1 83 81 1
0 S4 S84 0
1 sSa 85 1
0 S5 84 1
1 S5 81 0

(c) Giovanni De Micheli

19

Trivial method

Consider all possible don ’t care assignments

An don 't care imply

v 2" completely specified FSMs
v 2" solutions

¢ Example:
AReplace * by 1

v, ={{sy,s5},{s3} {s4}, {5} }
AReplace * by 0

vl ={{sy,Ss},{5253,84}}

(c) Giovanni De Micheli

20

Compatibility and implications
Example

¢Compatible states {s, , s,} INPUT flTATE l—STATE OUTPUT
olf {s;, s,} are compatible . . - :
A Then {s,, s; } are also compatible (1) :2 :2 é
oIncompatible states {s, , ss} C} 2 ‘Z %
0 35 34 1
1 s5 1 0

(c) Giovanni De Micheli 21

Compatibility and implications

¢Compatible pairs:

A {sy, Sy}
A {s4, S5} — {S3, S4}
INPUT |STATE [N-STATE [OUTPUT
A {8y, 54} — {83, 54} 0 31 33 1
A {sy, S3} < {sy, S5} 1 *1 *5 :
0 59 53 *
A {s;, 8.} < {5, 84} U {sy, S5} 1 $9 35 1
. . 0 : 8 0
¢Incompatible pairs ” . . .
A {s), s} (1) - . 0
34 $5 1
A {s;, S} 0 s5 Sa 1
A {51, 34} 1 35 81 0
A {54! SS}
A {51! S3}

(c) Giovanni De Micheli 22

Compatibility and implications

¢ A class of compatible states is such that all state pairs are
compatible

¢ A class is maximal
Alf not subset of another class

¢ Closure property

A A set of classes such that all compatibility implications are
satisfied

¢ The set of maximal compatibility classes

A Has the closure property
A May not provide a minimum solution

(c) Giovanni De Micheli 23

Maximum compatibility classes

¢ Example:
A{s, S5}
A{Sq, S5} < {83, S4}
A{Sy, S3, S4} — {4, S5}

¢ Cover with all MCC has cardinality 3

(c) Giovanni De Micheli

24

Exact problem formulation

¢ Prime compatibility classes:

A Compatibility classes having the property that they are not subset of other
classes implying the same (or subset) of classes

¢ Compute all prime compatibility classes

¢ Select a minimum number of prime classes

A Such that all states are covered

A All implications are satisfied

¢ Exact solution requires binate cover

¢ Good approximation methods exists

A Stamina

(c) Giovanni De Micheli

25

Prime compatibility classes

¢ Example:
A{s,, Sy}
A{S,, S} — {s3, S4}
A{Ss), S3, S4} < {8, S5}
¢ Minimum cover:

A{81! S5} y {SZ! S3! s4}

AMinimun cover has cardinality 2

(c) Giovanni De Micheli

26

State encoding

¢ Determine a binary encoding of the states

A Optimizing some property of the representation (mainly area)

¢ Two-level model for combinational logic

A Methods based on symbolic optimization

v Minimize a symbolic cover of the finite state machine
v Formulate and solve a constrained encoding problem

¢ Multiple-level model

A Some heuristic methods that look for encoding which privilege
cube and/or kernel extraction

A Weak correlation with area minimality

(c) Giovanni De Micheli 27

(c) Giovanni De Micheli

Example

INPUT | P-STATE N-STATE OUTPUT
0 s1 s3 0
1 s1 s3 0
0 S2 s3 0
1 s2 s1 1
0 s3 s 0
1 s3 s4 1
0 s4 s2 1
1 s4 s3 0
0 s5 2 1
1 s s 0

28

* Minimum symbolic cover:

Example

* Encoded cover:

* s1s2s4 s3 0
1 s2 s1 1
0 s4sd S2 1
1 s3 s4 1
* 1% 001 0
1 101 11 1
0 *00 101 1
1 001 100 1

(c) Giovanni De Micheli

29

Summary
finite-state machine optimization

¢ FSM optimization has been widely researched

A Classic and newer approaches

¢ State minimization and encoding correlate to area
reduction

A Useful, but with limited impact

¢ Performance-oriented FSM optimization has mixed results

A Performance optimization is usually done by structural methods

(c) Giovanni De Micheli 30

Module 2

¢ Objective
A Structural representation of sequential circuits
ARetiming

A Extensions

(c) Giovanni De Micheli

31

Structural model for sequential circuits

¢ Synchronous logic network
AVariables

A Boolean equations

A Synchronous delay annotation

¢ Synchronous network graph
A Vertices <« equations < /O, gates
AEdges < dependencies < nets

AWeights < synchronous delays <« registers

(c) Giovanni De Micheli

32

AN\ L a

// /°7 \c ' I
I enl
—/)) |

(c) Giovanni De Micheli

Example

o) = ;(n) F ;(n-1)

p(n) = j(n=1) 7 ;(n=2)

) — L(n)p(n)

dn) = () d/("—l)

e = gm)en=1) 4 gy
o) — (1)

s(n) — o(n-1)

(c) Giovanni De Micheli

i & 1@1
i@1 & @2
a b

¢+ de1’

= de@l4+d V¥V

e@1

34

Approaches to sequential synthesis

¢ Optimize combinational logic only
AFreeze circuit at register boundary
A Modify equation and network graph topology
¢ Retiming
A Move register positions. Change weights on graph

APreserve network topology

¢ Synchronous transformations

ABlend combinational transformations and retiming

A Powerful, but complex to use

(c) Giovanni De Micheli

35

Example of local retiming

S e Y ==) S W) x
d

(a) (c)

1
1
e 7{ : — e 7(: —
1
(b) (d)

(c) Giovanni De Micheli 36

Retiming

¢ Global optimization technique

¢ Change register positions

AAffects area:
v Retiming changes register count

AAffects cycle-time
v Changes path delays between register pairs

¢ Retiming algorithms have polynomial-time
complexity

(c) Giovanni De Micheli

37

Retiming assumptions

¢ Delay is constant at each vertex
ANo fanout delay dependency

Graph topology is invariant
ANo logic transformations

¢ Synchronous implementation

A Cycles have positive weights
v Each feedback loop has to be broken by at least one register

A Edges have non-negative weights
v Physical registers cannot anticipate time

¢ Consider topological paths
A No false path analysis

(c) Giovanni De Micheli

38

Retiming

¢ Retiming of a vertex v

Alntegerr,
ARegisters moved from output to input: r, positive
ARegisters moved from input to output: r, negative

¢ Retiming of a network
A Vector whose entries are the retiming at various vertices
¢ A family of I/O equivalent networks are specified by:

A The original network

A A set of vectors satisfying specific constraints
v Legal retiming

(c) Giovanni De Micheli 39

Original graph

Retimed graph

(c) Giovanni De Micheli

Example

40

Definitions and properties

¢ Definitions:
AWw(v;, v;) weightonedge (v, v;)
A(V, ..., v;) path fromyv;to v,
AW(V;, ..., v;) weight on path from v; to v,

Ad(v; ..., v;) combinational delay on path from v; to v,

¢ Properties:

ARetiming of an edge (v;, v;) @ i
Y W Ewtn-r

ARetiming of a path (v;, ..., v;)
Y W (Vo V) WV e V) 1=

A Cycle weights are invariant

(c) Giovanni De Micheli

®

41

Legal retiming

¢ A retiming vector is legal iff:
ANo edge weight is negative
v W (Vi Vi) = wj (v, vi) +1,—1; 20 foralli,
A Given a clock period «:
A Eachpath(v;, ...,v))withd (v, ...,v)) >
has at least one register:
YW (V. V) EW (V. V) + 1= 21 foralli, j

A Equivalently, each combinational path delay is less than ¢

(c) Giovanni De Micheli

42

Refined analysis

¢ Least-register path

AW (v;, vj) =min w (v;, ..., v;) over all paths between v; and v;

¢ Critical delay:

AD (v, vj) =maxd (v, ..., v;) over all paths between v;and v,
with weight W (v;, v))

¢ There exist a vertex pair (v;, v;) whose delay D (v;, v;)
bounds the cycle time

(c) Giovanni De Micheli 43

Example

Vertices:
*Paths: (Vaa Vb Ve s Ve) and (Va! Vs Ve Vas Ve)

‘W(v,, ve) =2

(c) Giovanni De Micheli 44

Minimum cycle-time retiming problem

¢ Find the minimum value of the clock period ¢
such that there exist a retiming vector where:

Ar -1 sw; forall (v, V)
v AII reglsters are implementable

Ari-r SW(v,v)-1 forall(v;,v;)suchthatD (v, v;) > @
v AII timing path constraints are satisfied

¢ Solution

A Given a value of ¢

A Solve linear constraints Ar<b
v Mixed integer-linear program

A A set of inequalities has a solution if the constraint graph has no positive cycles
v Bellman-Ford algorithm — compute longest path

A lterative algorithm
v Relaxation

(c) Giovanni De Micheli 45

Minimum cycle-time retiming algorithm

¢ Compute all pair path weights W (v;, v;) and delays D (v;, v))
A Warshall-Floyd algorithms with complexity O(|[V|*)
¢ Sort the elements of D (v;, v)) in decreasing order

A Because an element of D is the minimum ¢

¢ Binary search for a ¢ in D (v;, v;) such that

A There exists a legal retiming

A Bellman-Ford algorithm with complexity O(|V]®)

¢ Remarks

A Result is a global optimum

A Overall complexity is O([V]® log |V|)

(c) Giovanni De Micheli

46

Example: original graph

Constraints (first type):
°r,-1,<1orequivalentlyr,2r, -1

*r.-r, <1orequivalently r.2r, -1

(c) Giovanni De Micheli 47

Example: constraint graph

Constraints (first type):
-1
*r,-r,<1orequivalentlyr,2r, -1 @ @

*r.-r, <1orequivalently r.2r, -1

(c) Giovanni De Micheli 48

Example

¢ Sort elements of D:
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
¢ Select p =19
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Pass: legal retiming found
¢ Select p =13
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Pass: legal retiming found
¢ Select (p <13
A 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
A Fail: no legal retiming found

¢ Fastest cycle time is ¢ = 13. Corresponding retiming vector is used

(c) Giovanni De Micheli 49

Example ¢ =13

ra—re < 2—1 or equivalently re > rq—1
re—ry < 0—1 or equivalently ry > re+1
rf—rg < 0—1 or equivalently rq4 > r_,~+1

rg—ry < 2—1 or equivalently ry > rg—1

rg—re < 3—1 or equivalently re > rg—2

(c) Giovanni De Micheli 30

Example ¢p =13

¢ Constraint graph:

¢Longest path from source
A -[12342100]

¢Retimed graph

(c) Giovanni De Micheli

51

Example ¢p =13

¢ The solution is not unique

(c) Giovanni De Micheli

52

Relaxation-based retiming

¢ Most common algorithm for retiming
AAvoids storage of matrices Wand D

A Applicable to large circuits

¢ Rationale

A Search for decreasing in fixed step
v Look for values of ¢(p compatible with peripheral circuits

A Use efficient method to determine legality

v Network graph is often very sparse

A Can be coupled with topological timing analysis

(c) Giovanni De Micheli

53

Relaxation-based retiming

¢ Start with a given cycle-time
¢ Look for paths with excessive delays

¢ Make such paths shorter

A BY bringing the terminal register closer
A Some other paths may become longer

A Namely, those path whose tail has been moved

¢ Use an iterative approach

(c) Giovanni De Micheli

o4

Relaxation-based retiming

¢ Define data ready time at each node

A Total delay from register boundary

¢ lterative approach

AFind vertices with dafa ready >
A Retime these vertices by 1

¢ Algorithm properties

Alf at some iteration there is no vertex with dafa ready > «,
a legal retiming has been found

Alf a legal retiming is not found in |V| iterations,
then no legal retiming exists for that ¢

(c) Giovanni De Micheli

95

Example ¢ =13 iteration =1

(c) Giovanni De Micheli 56

Example <« =13 iteration =2

(c) Giovanni De Micheli

of

(c) Giovanni De Micheli

Example ¢ =13 iteration =3

. 3%

58

Retiming for minimum area

¢ Find a retiming vector that minimizes the number of
registers

¢ Simple area modeling

A Every edge with a positive weight denotes registers
A Total register area is proportional to the sum of all weights

¢ Register sharing model

AEvery set of positively-weighted edges with common tail is
realized by a shift registers with taps

A Total register area is proportional to the sum, over all vertices,
of the maxima of weights on outgoing edges

(c) Giovanni De Micheli

59

pEn

b

L/:l
A

pEn

(c) Giovanni De Micheli

Minimum area retiming

simple model

¢ Register variation at node v

A 1, (indegree(v) — outdegree(v))
¢ Total area variation:

A2 r, (indegree(v) - outdegree(v))

¢ Area minimization problem:
AMin 2 r, (indegree(v) — outdegree(v))

ASuch thatr,-r; =w; forall (v, v;)

(c) Giovanni De Micheli 61

Minimum area retiming

under timing constraint

¢ Area recovery under timing constraint
AMin X2 r, (indegree(v) — outdegree(v)) such that:

Ari—-1, Swy forall (v, v;)and
Ari—1, SW(v,v) -1 forall(v; v;)suchthatD (v; v;) >

¢ Common implementation is by integer linear program
AProblem can alternatively be transformed into a matching problem
and solved by Edmonds-Karp algorithm
¢ Register sharing

A Construct auxiliary network and apply this formulation.

A Auxiliary network construction takes into account register sharing
(c) Giovanni De Micheli 62

Other problems related to retiming

¢ Retiming pipelined circuits
A Balance pipe stages by using retiming
A Trade-off latency versus cycle time
¢ Peripheral retiming
A Use retiming to move registers to periphery of a circuit
ARestore registers after optimizing combinational logic
¢ Wire pipelining
A Use retiming to pipeline interconnection wires

A Model sequential and combinational macros
A Consider wire delay and buffering

(c) Giovanni De Micheli

63

Summary of retiming

¢ Sequential optimization technique for:
A Cycle time or register area
¢ Applicable to

A Synchronous logic networks

A Architectural models of data paths
v Vertices represent complex (arithmetic) operators

A Exact algorithm in polynomial time

¢ Extension and issues

ADelay modeling
A Network granularity

(c) Giovanni De Micheli

64

Module 3

¢ Objective
ARelating state-based and structural models

A State extraction

(c) Giovanni De Micheli

65

Relating the sequential models

¢ State encoding

A Maps a state-based representation into a structural one

¢ State extraction

A Recovers the state information from a structural model

& Remark

AA circuit with n registers may have 2" states

AUnreachable states

(c) Giovanni De Micheli

66

o State variables: p, q
<Initial state p=0; g=0;

oFour possible states

(c) Giovanni De Micheli

State extraction

67

State extraction

¢ Reachability analysis

A Given a state, determine which states are reachable for some
inputs

A Given a state subset, determine the reachable state subset
A Start from an initial state

A Stop when convergence is reached

¢ Notation:

A A state (or a state subset) is represented by an expression over
the state variables

Almplicit representation

(c) Giovanni De Micheli 68

Reachability analysis

¢ State transition function: f
¢ Initial state: r,
¢ States reachable from r,

Almage of ry under f
¢ States reachable from set r,
Almage of r, under f
¢ lteration
Ar. =r .U (image of r, under f)
¢ Convergence

AT =T, for some k

(c) Giovanni De Micheli

69

(a) (b)
e Initial state rog = p'q’.

z'p'q" + pq

e [he state transition function f = / /
xp + pq

(c) Giovanni De Micheli 70

Example

¢Image of p’ g’ under f:

AWhen(p=0 andq=0),freducesto[x x]T
Almageis[01]TU [10]"

o States reachable from the reset state: jgo}D— ,
A(p=1;9=0)and (p=0;q=1) =
An=p q +pq +p q=p +q I=stre

#States reacheable fromr;: 'y

A[00]TU[O1]TU [10T

eConvergence: Co——(3
AS)=p’'q’;8,=pq’;s,=p’ q; ,

(c) Giovanni De Micheli n” 71

Completing the extraction

¢Determine state set

A Vertex set

¢Determine transitions and 1/O labels
A Edge set

A Inverse image computation

A Look at conditions that lead into a given state

(c) Giovanni De Micheli

72

Example

eTransition intos,=p’ q’

APatterns that make f=[00] are:

(xX'p'q +pa) (xp’ +pq’) =x'p'q
ATransition from state s, = p’ q under

input x’
OO

AAndsoon...
0

@)

(c) Giovanni De Micheli

11 *11

17
73

Remarks

¢ Extraction is performed efficiently with implicit methods

¢ Model transition relation X (i,x,y) with BDDs

A This function relates possible triples:
v (input, current_state, next_state)
Almage of r,:

v Six (X(i,x,y) r (x))
v Where r, depends on inputs x

A Smoothing on BDDs can be achieved efficiently

(c) Giovanni De Micheli

74

Summary

¢ State extraction can be performed efficiently to:
A Apply state-based optimization techniques

A Apply verification techniques

& State extraction is based on forward and backward state
space traversal:

A Represent state space implicitly with BDDs

Almportant to manage the space size, which grows exponentially
with the number of registers

(c) Giovanni De Micheli 75

