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Module 1

◆Objective
▲Motivation and assumptions for sequential synthesis

▲Finite-state machine design and optimization
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Synchronous logic circuits

◆ Interconnection of
▲Combinational logic gates
▲Synchronous delay elements

▼ Edge-triggered, master/slave

◆Assumptions
▲No direct combinational feedback
▲Single-phase clocking

◆Extensions to
▲Multiple-phase clocking

▲Gated latches
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Modeling synchronous circuits

◆Circuit are modeled in hardware languages
▲Circuit model may be directly related to FSM model

▼ Description by: switch-case

▲Circuit model may be structural
▼ Explicit definition of registers

◆Sequential circuit models can be generated from high-level 
models
▲Control generation in high-level synthesis 
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Modeling synchronous circuits

◆State-based model:
▲Model circuits as finite-state machines (FSMs)
▲Represent by state tables/diagrams

▲Apply exact/heuristic algorithms for:
▼ State minimization
▼ State encoding

◆Structural model
▲Represent circuit by synchronous logic network
▲Apply

▼ Retiming
▼ Logic transformations
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State-based optimization
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Modeling synchronous circuits

◆Advantages and disadvantages of models

◆State-based model
▲Explicit notion of state

▲ Implicit notion of area and delay

◆Structural model
▲ Implicit notion of state

▲Explicit notion of area and delay

◆Transition from a model to another is possible
▲State encoding

▲State extraction
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Sequential logic optimization

◆Typical flow
▲Optimize FSM state model first
▼Reduce complexity of the model
▼E.g., apply state minimization
▼Correlates to area reduction

▲Encode states and obtain a structural model
▼Apply retiming and transformations
▼Achieve performance enhancement

▲Use state extraction for verification purposes
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Formal finite-state machine model

◆A set of primary input patterns X

◆A set of primary output patterns Y

◆A set of states S

◆A state transition function: δ: X � S →  S

◆An output function:
▲ λ:  X � S → Y for Mealy models

▲ λ:  S → Y for Moore models
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State minimization

◆Classic problem
▲Exact and heuristic algorithms are available
▲Objective is to reduce the number of states and hence the area

◆Completely-specified finite-state machines
▲No don�t care conditions
▲Polynomial-time solutions

◆ Incompletely-specified finite-state machines
▲Unspecified transitions and/or outputs

▼ Usual case in synthesis

▲ Intractable problem:
▼ Requires binate covering
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State minimization
for completely-specified FSMs

◆Equivalent states:
▲Given any input sequence, the corresponding output sequence match

◆Theorem:
▲Two states are equivalent if and only if:

▼ They lead to identical outputs and their next-states are equivalent

◆Equivalence is transitive
▲Partition states into equivalence classes

▲Minimum finite-state machine is unique
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State minimization
for completely-specified FSMs

◆ Stepwise partition refinement:
▲ Initially: 

▼ All states in the same partition block

▲ Iteratively:
▼ Refine partition blocks

▲ At convergence:
▼ Partition blocks identify equivalent states

◆ Refinement can be done in two directions
▲ Transitions from states in block to other states

▼ Classic method. Quadratic complexity

▲ Transitions into states of block under consideration
▼ Inverted tables. Hopcroft�s algorithm.
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Example of refinement

◆Initial partition:
▲Π1 : States belong to the same block when outputs are 

the same for any input

◆Iteration:
▲Πk+1 : States belong to the same block if they were 

previously in the same block and their next states are in 
the same block of Πk for any input

◆Convergence:
▲Πk+1 = Πk
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Example
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Example
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Example

◆Π1 = { { s1, s2} ,  { s3,s4 }, { s5 } }

◆Π2 = { { s1, s2} ,  { s3} , { s4 }, { s5 } }

◆Π2 is a partition into equivalence classes
▲No further refinement is possible

▲States { s1, s2 } are equivalent
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State minimization
for incompletely-specified finite-state machines

◆Applicable input sequences
▲All transitions are specified

◆Compatible states
▲Given any applicable input sequence, the corresponding output 

sequence match

◆Theorem:
▲Two states are compatible if and only if:

▼ They lead to identical outputs
◆ (when both are specified)

▼ And their next state is compatible
◆ (when both are specified)
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State minimization
for incompletely-specified finite-state machines

◆Compatibility is not an equivalence relation

◆Minimum finite-state machine is not unique

◆ Implication relation make the problem intractable
▲Two states may be compatible, subject to other states being 

compatible.

▲ Implications are binate satisfiability clauses
▼ a -> b      = a’+b
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Example
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Trivial method

◆Consider all possible don�t care assignments
▲n don�t care imply

▼ 2n completely specified FSMs
▼ 2n solutions

◆Example:
▲Replace * by 1

▼Π1 = { { s1, s2} , { s3}, {s4 }, { s5 } } 
▲Replace * by 0

▼Π1 = { { s1, s5} , { s2,s3 , s4 } }
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Compatibility and implications
Example

◆Compatible states {s1 , s2}

◆If {s3 , s4} are compatible
▲ Then {s1 , s5 } are also compatible

◆Incompatible states {s2 , s5}
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Compatibility and implications

◆Compatible pairs:
▲ {s1, s2}
▲ {s1, s5} ← {s3, s4}
▲ {s2, s4} ← {s3, s4}

▲ {s2, s3} ← {s1, s5}
▲ {s3, s4} ← {s2, s4}  U  {s1, s5}

◆Incompatible pairs
▲ {s2, s5}
▲ {s3, s5}
▲ {s1, s4} 
▲ {s4, s5}
▲ {s1, s3}
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Compatibility and implications

◆A class of compatible states is such that all state pairs are 
compatible

◆A class is maximal
▲ If not subset of another class

◆Closure property
▲A set of classes such that all compatibility implications are 

satisfied

◆The set of maximal compatibility classes
▲Has the closure property
▲May not provide a minimum solution
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Maximum compatibility classes

◆ Example:

▲{s1, s2}

▲{s1, s5} ← {s3, s4}

▲{s2, s3, s4} ← {s1, s5}

◆Cover with all MCC has cardinality 3
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Exact problem formulation

◆ Prime compatibility classes:
▲ Compatibility classes having the property that they are not subset of other 

classes implying the same (or subset) of classes

◆ Compute all prime compatibility classes

◆ Select a minimum number of prime classes
▲ Such that all states are covered

▲ All implications are satisfied

◆ Exact solution requires binate cover

◆ Good approximation methods exists
▲ Stamina
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Prime compatibility classes

◆ Example:

▲{s1, s2}

▲{s1, s5} ← {s3, s4}

▲{s2, s3, s4} ← {s1, s5}

◆ Minimum cover:
▲{s1, s5}  , {s2, s3, s4}  

▲Minimun cover has cardinality 2
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State encoding

◆Determine a binary encoding of the states
▲Optimizing some property of the representation (mainly area)

◆Two-level model for combinational logic
▲Methods based on symbolic optimization

▼ Minimize a symbolic cover of the finite state machine
▼ Formulate and solve a constrained encoding problem

◆Multiple-level model
▲Some heuristic methods that look for encoding which privilege 

cube and/or kernel extraction

▲Weak correlation with area minimality
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Example

INPUT P-STATE N-STATE OUTPUT

0 s1 s3 0

1 s1 s3 0

0 s2 s3 0

1 s2 s1 1

0 s3 s5 0

1 s3 s4 1

0 s4 s2 1

1 s4 s3 0

0 s5 s2 1

1 s5 s5 0
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Example

* s1s2s4 s3 0

1 s2 s1 1

0 s4s5 s2 1

1 s3 s4 1

• Minimum symbolic cover:

• Encoded cover :

* 1** 001 0

1 101 111 1

0 *00 101 1

1 001 100 1
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Summary
finite-state machine optimization

◆FSM optimization has been widely researched
▲Classic and newer approaches

◆State minimization and encoding correlate to area 
reduction
▲Useful, but with limited impact

◆Performance-oriented FSM optimization has mixed results
▲Performance optimization is usually done by structural methods
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Module 2

◆Objective
▲Structural representation of sequential circuits

▲Retiming
▲Extensions
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Structural model for sequential circuits

◆Synchronous logic network
▲Variables

▲Boolean equations
▲Synchronous delay annotation

◆Synchronous network graph
▲Vertices ↔ equations  ↔ I/O, gates

▲Edges ↔ dependencies  ↔ nets
▲Weights ↔ synchronous delays  ↔ registers
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Example
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Example
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Approaches to sequential synthesis

◆Optimize combinational logic only
▲Freeze circuit at register boundary

▲Modify equation and network graph topology

◆Retiming
▲Move register positions. Change weights on graph
▲Preserve network topology

◆Synchronous transformations
▲Blend combinational transformations and retiming
▲Powerful, but complex to use
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Example of local retiming
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Retiming

◆Global optimization technique

◆Change register positions
▲Affects area:
▼Retiming changes register count

▲Affects cycle-time
▼Changes path delays between register pairs

◆Retiming algorithms have polynomial-time 
complexity



(c) Giovanni De Micheli 38

Retiming assumptions

◆Delay is constant at each vertex
▲No fanout delay dependency

◆Graph topology is invariant
▲No logic transformations

◆Synchronous implementation
▲Cycles have positive weights

▼ Each feedback loop has to be broken by at least one register

▲Edges have non-negative weights
▼ Physical registers cannot anticipate time

◆Consider topological paths
▲No false path analysis
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Retiming

◆Retiming of a vertex v
▲ Integer rv

▲Registers moved from output to input:  rv positive
▲Registers moved from input to output:  rv negative

◆Retiming of a network
▲Vector whose entries are the retiming at various vertices

◆A family of I/O equivalent networks are specified by:
▲The original network
▲A set of vectors satisfying specific constraints

▼ Legal retiming
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Example
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Original graph Delay: 24

Retimed graph Delay: 13



(c) Giovanni De Micheli 41

Definitions and properties

◆Definitions:
▲w( vi, v j) weight on edge ( vi, vj )
▲( vi, …, vj ) path from vi to vj

▲w( vi, …, vj ) weight on path from vi to vj

▲d( vi, …, vj ) combinational delay on path from vi to vj 

◆Properties:
▲Retiming of an edge ( vi, vj )

▼ ŵij = wij + rj – ri

▲Retiming of a path ( vi, …, vj )
▼ ŵ ( vi, …, vj) = w (vi, …, vj) + rj – ri

▲Cycle weights are invariant

vi vj

wij
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Legal retiming

◆A retiming vector is legal iff:
▲No edge weight is negative

▼ŵij ( vi, vj) = wij (vi, vj) + rj – ri ≥ 0 for all i, j

▲Given a clock period φ:
▲ Each path ( vi, …, vj) with d ( vi, …, vj)  > φ

has at least one register:
▼ŵ ( vi, …, vj) = w (vi, …, vj) + rj – ri ≥ 1 for all i, j

▲Equivalently, each combinational path delay is less thanφ
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Refined analysis

◆Least-register path
▲W (vi, vj) = min w (vi, …, vj)  over all paths between vi and vj

◆Critical delay:
▲D (vi, vj) = max d (vi, …, vj)  over all paths between vi and vj 

with weight W (vi, vj) 

◆There exist a vertex pair (vi, vj) whose delay D (vi, vj) 
bounds the cycle time
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Example
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•Vertices: va, ve

•Paths: (va, vb, vc , ve) and (va, vb, vc, vd, ve)

•W(va, ve) = 2

•D(va, ve) = 16
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Minimum cycle-time retiming problem

◆ Find the minimum value of the clock period φ
such that there exist a retiming vector where:
▲ ri – rj ≤ wij for all ( vi, vj )

▼ All registers are implementable
▲ ri – rj ≤ W (vi, vj) – 1   for all ( vi, vj  ) such that D (vi, vj) > φ

▼ All timing path constraints are satisfied

◆ Solution
▲ Given a value of φ
▲ Solve linear constraints  A r ≤ b

▼ Mixed integer-linear program
▲ A set of inequalities has a solution if the constraint graph has no positive cycles

▼ Bellman-Ford algorithm – compute longest path
▲ Iterative algorithm

▼ Relaxation
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Minimum cycle-time retiming algorithm

◆ Compute all pair path weights W (vi, vj)  and delays D (vi, vj) 
▲ Warshall-Floyd algorithms with complexity O( |V|3 )

◆ Sort the elements of D (vi, vj) in decreasing order
▲ Because an element of D is the minimum φ

◆ Binary search for a φ in D (vi, vj) such that
▲ There exists a legal retiming

▲ Bellman-Ford algorithm with complexity O( |V|3 )

◆ Remarks
▲ Result is a global optimum

▲ Overall complexity is O( |V|3 log |V|  )
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Example: original graph

0
0

7 7 7

3

000

0

0

1

11

1
333

0

vf

vc

vh

vg ve

vd

vbva

•Constraints (first type):

• ra - rb ≤ 1 or equivalently rb ≥ ra – 1

• rc - rb ≤ 1 or equivalently  rc ≥ rb – 1

• …
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Example: constraint graph
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•Constraints (first type):

• ra - rb ≤ 1 or equivalently rb ≥ ra – 1

• rc - rb ≤ 1 or equivalently  rc ≥ rb – 1

• …
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Example

◆ Sort elements of D:
▲ 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3

◆ Selectφ = 19
▲ 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
▲ Pass: legal retiming found

◆ Select φ = 13
▲ 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
▲ Pass: legal retiming found

◆ Select φ < 13
▲ 33,30,27,26,24,23,21,20,19,17,16,14,13,12,10,9,7,6,3
▲ Fail: no legal retiming found

◆ Fastest cycle time isφ = 13. Corresponding retiming vector is used
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Example  φ = 13
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Example φ = 13

◆Constraint graph:

◆Longest path from source
▲ -[12342100]

◆Retimed graph 1
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Example φ = 13

◆The solution is not unique
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Relaxation-based retiming

◆Most common algorithm for retiming
▲Avoids storage of matrices W and D

▲Applicable to large circuits

◆Rationale
▲Search for decreasing φ in fixed step

▼ Look for values of φ compatible with peripheral circuits

▲Use efficient method to determine legality
▼ Network graph is often very sparse

▲Can be coupled with topological timing analysis
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Relaxation-based retiming

◆Start with a given cycle-time φ
◆Look for paths with excessive delays

◆Make such paths shorter 
▲By bringing the terminal register closer

▲Some other paths may become longer

▲Namely, those path whose tail has been moved

◆Use an iterative approach
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Relaxation-based retiming

◆Define data ready time at each node
▲Total delay from register boundary

◆ Iterative approach
▲Find vertices with data ready > φ
▲Retime these vertices by 1

◆Algorithm properties
▲ If at some iteration there is no vertex with data ready > φ,

a legal retiming has been found

▲ If a legal retiming is not found in |V| iterations,
then no legal retiming exists for that φ
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Example   φ = 13 iteration = 1
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Example   φ = 13  iteration = 2
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Example   φ = 13 iteration = 3
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Retiming for minimum area

◆Find a retiming vector that minimizes the number of 
registers

◆Simple area modeling
▲Every edge with a positive weight denotes registers

▲Total register area is proportional to the sum of all weights

◆Register sharing model
▲Every set of positively-weighted edges with common tail is 

realized by a shift registers with taps
▲Total register area is proportional to the sum, over all vertices,    

of the maxima of weights on outgoing edges



(c) Giovanni De Micheli 60

Example
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Minimum area retiming
simple model

◆Register variation at node v
▲ rv ( indegree(v) – outdegree(v) )

◆Total area variation:
▲Σ rv ( indegree(v) – outdegree(v) )

◆Area minimization problem:
▲Min Σ rv ( indegree(v) – outdegree(v) )

▲Such that ri – rj ≤ wij for all ( vi, vj )
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Minimum area retiming
under timing constraint

◆Area recovery under timing constraint
▲Min Σ rv ( indegree(v) – outdegree(v) )   such that:

▲ri – rj ≤ wij for all ( vi, vj ) and

▲ri – rj ≤ W (vi, vj) – 1   for all ( vi, vj  ) such that D (vi, vj) > φ

◆Common implementation is by integer linear program
▲Problem can alternatively be transformed into a matching problem 

and solved by Edmonds-Karp algorithm

◆Register sharing
▲Construct auxiliary network and apply this formulation.

▲Auxiliary network construction takes into account register sharing
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Other problems related to retiming

◆Retiming pipelined circuits
▲Balance pipe stages by using retiming
▲Trade-off latency versus cycle time

◆Peripheral retiming
▲Use retiming to move registers to periphery of a circuit
▲Restore registers after optimizing combinational logic

◆Wire pipelining
▲Use retiming to pipeline interconnection wires
▲Model sequential and combinational macros
▲Consider wire delay and buffering
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Summary of retiming

◆Sequential optimization technique for:
▲Cycle time or register area

◆Applicable to
▲Synchronous logic networks
▲Architectural models of data paths

▼ Vertices represent complex (arithmetic) operators

▲Exact algorithm in polynomial time

◆Extension and issues
▲Delay modeling

▲Network granularity
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Module 3

◆Objective
▲Relating state-based and structural models

▲State extraction
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Relating the sequential models

◆State encoding
▲Maps a state-based representation into a structural one

◆State extraction
▲Recovers the state information from a structural model

◆Remark
▲A circuit with n registers may have 2n states

▲Unreachable states
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State extraction

◆State variables: p, q

◆Initial state p=0; q=0;

◆Four possible states
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State extraction

◆Reachability analysis
▲Given a state, determine which states are reachable for some 

inputs

▲Given a state subset, determine the reachable state subset

▲Start from an initial state

▲Stop when convergence is reached

◆Notation:
▲A state (or a state subset) is represented by an expression over 

the state variables

▲ Implicit representation
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Reachability analysis

◆State transition function: f

◆ Initial state: r0

◆States reachable from r0

▲ Image of r0 under f

◆States reachable from set rk

▲ Image of rk under f

◆ Iteration
▲rk+1 = rk U ( image of rk under f)

◆Convergence
▲rk+1 = rk for some k
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Example
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Example

◆Image of p�q� under f:
▲When ( p = 0 and q = 0 ), f reduces to [ x� x ]T

▲ Image is [ 0 1 ]T U  [ 1 0 ]T

◆States reachable from the reset state:
▲(p = 1; q = 0) and ( p = 0; q = 1)
▲r1 = p�q� + pq� + p�q = p� + q�

◆States reacheable from r1:
▲[ 0 0 ]T U [ 0 1 ]T U  [ 1 0 ]T

◆Convergence:
▲s0 = p�q�; s1 = pq�; s2 = p�q;
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Completing the extraction

◆Determine state set
▲ Vertex set

◆Determine transitions and I/O labels
▲ Edge set

▲ Inverse image computation
▲ Look at conditions that lead into a given state
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Example

◆Transition into s0 = p�q�

▲Patterns that make f = [ 0 0 ]T are:

(x�p�q� + pq)�(xp� + pq�)� = x�p�q

▲Transition from state s2 = p�q under 

input x�

▲And so on …
s0 

s2

s1

0
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Remarks

◆Extraction is performed efficiently with implicit methods

◆Model transition relation χ (i,x,y) with BDDs
▲This function relates possible triples:

▼ ( input, current_state, next_state )

▲ Image of rk:
▼ Si,x ( χ(i,x,y) rk (x) )
▼ Where rk depends on inputs x

▲Smoothing on BDDs can be achieved efficiently
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Summary

◆State extraction can be performed efficiently to:
▲Apply state-based optimization techniques

▲Apply verification techniques

◆State extraction is based on forward and backward state 
space traversal:
▲Represent state space implicitly with BDDs

▲ Important to manage the space size, which grows exponentially 
with the number of registers


