Position Control by Examples

1 Device description

Consider the following device (Figure 1). It is a

cable driven disc steered by a Brushless Maxon?!

DC motor. It is equipped with two incremental

encoders for position measurement. The first one

is on the motor shaft and the second one is on the

output shaft.

The device parameters are considered as follows:

e Mp and Jp are respectively the Mass and the
Inertia of the disc relative to its rotation
center.

e rgis the distance of the center of mass of the
disc to its rotation center.

e Inistheinertia of the motor.

e The gear ratio of the cable based transmission
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is 15. Figure 1-Haptic Device used for position control

Disc with Inertia Jp
and Mass M,

Motor with Inertia J,,

Figure 2- Parameterization of the Haptic Paddle

2 Device Dynamic Model
By considering ks and 7 4y, respectively the viscous friction constant and the dry friction at the output
side, the Euler dynamic equation is written as follows

XM= gRLenL = Tact —Tary — kvisgL - I‘,g (eq. 1)
[y =Mp.g.74.5in(6;) (eq. 2)

Fg is the gravity torque. I, is the actuating torque reported at the output side.

1 www.maxonmotor.ch
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Jg;, is the total inertia reported at the load side
Jre = Ip + 1?7y, (eq. 3)
Combining (eq.2) and (eq.3) leads to:

:]RLéL = Tace = Tary — kviséL —Mp gy sin(6,) (eq.4)

3 Control implementation

3.1 Exact compensation strategy
The exact compensation control strategy consists of using the motor torque control to compensate all the
resistant torques. It can be as simple as compensating the gravity, the friction or any other known effects.

Hence, the actuating control torque may be written as:

Tace = Taee + l—‘compensation (eq.5)

Where Icompensation IS the compensating torque and I, is the additional actuating torque assuring a

desired objective (position, velocity or force control). This additional torque may come from a PID
regulator.

(eq. 4) may be rewritten as follows:
Ir0L = Tace —Mpg Ty sin(6,,) — l-‘dry — kyis 01,
Torques (effects) to be compensated

We need to compensate the gravity, viscosity and the dry friction. This must be done by rejecting these
values. We pose:

Tact = Tace + Mpg Ty Sin(eL) + I‘dry + kyis BL (eq.6)

That means that the compensating torque is given by:

I‘compensation = Mpg Ty Sin(eL) + I‘dry + kyis 0, (eq.7)
Fcompensation ! Compensating torque <
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Figure 3- Compensating feedback loop
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The relation between &, and the new control variable torque is then given by the following dynamic
equation:

Tre € = Ty (eq. 8)

Important

Note that this relation between 8;and I, (eq. 4) is nonlinear. After applying the compensating
feedback, the relation between 6; and I'*;.; becomes linear. This operation is also called exact
nonlinear compensation or exact linearization. Furthermore, the obtained system (eq.8) is a double

integrator that may be controller by any conventional controller.

r .
compensation Compensating torque <
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0a(t) + Position e Toct Motor
—’®—’ Controller —> > + 7>
L
_ (PD. PID. ...) Load

Figure 4- Position control with a an exact compensating feedback loop
Finally, the control expression of the torque applied to the motor may be given by:

Iyee = ITpip + Mpg 1 sin(0,) + Igry + kyis BL (eq.9)
Where Ip;p = K- (e +T, -% + Ti [e(r)d T) (eq. 10)

3.2 Feed forward (A priori) strategy

We can evaluate the needed torque to realize a known trajectory defined by the desired position, velocity
and acceleration thanks to the dynamic inverse model. This torque is called the “a priori torque” and is
defined as the motor torque for a given time-defined trajectory (eq. 11).

l-‘ap = Tinotor (0 = 04(1),0 = 04(1),0 = 04(1)) (eq.11)
= Fap = 7RL9d + 1\de T'g Sin(Gd) ‘L‘ kvis Hd + Fdry (eq 12)
N I J
Inertia feed forward Gravity feed forward Friction feed forward
“A priori” “A priori” “A priori”

The final control torque is the sum of both contributions: the a priori torque computed thanks to the
desired position and a closed loop torque provided by a chosen control algorithm such as a PID function
(eq.13).
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The actuating control torque at the load side may be expressed as follows:

Iaee = Ipp + jRLéd + Mug 1y sin(0y) + kyis .Hd + Tary (eq. 13)
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Figure 5- Position control with an a priori torque

The dynamic behavior

By considering only the a priori loop, the dynamic behavior is deduced and given by (eq. 14)

Ir0 =Tg + Jp0q + Mag 1y sin(0y) + Ky;s B + Tary — Mgag 15 5in(8,) — kyis 6, — Lary
e=60-0,

= Jpég =T —kyis &g + {Mdg T4 sin(6,;) — Myg Ty sin(HL)} (eq. 14)

Important

This behavior does not correspond to a linear system cause to the presence of the sinus function.
To carry out the stability analysis of such dynamics after using a linear controller (PD, PID,...), one
must make a linearization around an operational point. Another solution is to use nonlinear
stability analysis tools such as Lyapounov stability purposes.

This means that in the presence of nonlinearities, the proof of the stability when using the a priori
controller must be taken with a particular care. Even though, this scheme remains commonly used
in robotic industrial control. This is due to its easiness of implementation while having the

possibility to take into account coupling effects when multi-DOF robots are considered.
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