QUANTUM PHYSICS III

Solutions to Problem Set 10 23 November 2018

1. On integrals involving the delta-function

1. Consider the integral

I= foo dx f(x)6(ax* + bx +c¢) . (1)

Denote the argument of the delta-function by g(x). There are several possibilities :

— If the equation g(x) = O has no real roots, then the argument of the delta-
function is never zero, hence 1 = 0.

— Suppose that the equation g(x) = 0 has two different real roots x;,. Near
each of them the function g(x) can be written as g(x) = g'(x;2)(x — x12) +
O((x — x12)?). Let O; and O, be small neighborhoods of the points x; and x,
correspondingly. The integral / becomes
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where we made the change of variable y = x—x; in the first integral, y = x—x;

in the second integral, and used the property of the delta-function

S(ax) = ieS(x), 3)
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with @ some constant. Taking the integrals, we have
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Finally, |g’(x1)| = |g'(x2)| = la(x; — x2)| = Vb? — 4ac, and
I'=(f(x) + f))(B* —4ac)™?. (5)

— Suppose now that x; = x, = xo. Expanding g(x) around x, and changing the
variable y = x — x, we arrive at
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2. Recall that
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where i numerates the roots of the function f. In our case E, = —2 , and
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is a vector of modulus |p’| in the direction of p.
2. Free particle’s Green function in three dimensions
1. By definition,
Go(z) = (10)
0 z— H()
This means that
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Therefore,
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2. Let us first compute the radial part of the integral :
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The resulting integral can be computed by the method of residues. To this end, we
close the contour of integration in the plane of complex p as shown in figure 1.
This does not change the value of the integral, since in the upper half-plane the
integrand approaches zero exponentially fast when the radius of the semi-circle
goes to infinity. The integrand has two poles at p = + 2mz. Recall that 7 = E + ie,
€ > 0, hence the pole contributing to the integral is the one at p = + V2mz. Thus,
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3. The formula (12) tells us that the Fourier transform of the function Gy(z,x,x’) =
(X|Go(2)Ix") 18

1
Go(z,p,p) = 6(p - p’)Z (15)
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This implies in particular the conservation of the free particle momentum. We now
use the momentum representation of the Green function to yield
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Fig. 1 — The contour of integration

4. The matrix element Gy(z, X, X") as a function of the complex variable z has a branch
cut along the real positive values of z. To calculate the difference between the points
on the opposite sides of the branch cut, one should continue analytically the function
4/z from the one side to another. This gives,
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5. For large values of x = |x|, the modulus |x — x’| can be expanded as
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Semiclassical S-matrix in one dimension
There is no easy way to do the integral with this transmission coefficient. You can try
again with D(p) =1 — e 7"/75. Solutions will follow shortly.



