QUANTUM PHYSICS III

Solutions to Problem Set 10

1. On integrals involving the delta-function

1. Consider the integral

$$
\begin{equation*}
I=\int_{-\infty}^{\infty} d x f(x) \delta\left(a x^{2}+b x+c\right) \tag{1}
\end{equation*}
$$

Denote the argument of the delta-function by $g(x)$. There are several possibilities :

- If the equation $g(x)=0$ has no real roots, then the argument of the deltafunction is never zero, hence $I=0$.
- Suppose that the equation $g(x)=0$ has two different real roots $x_{1,2}$. Near each of them the function $g(x)$ can be written as $g(x)=g^{\prime}\left(x_{1,2}\right)\left(x-x_{1,2}\right)+$ $O\left(\left(x-x_{1,2}\right)^{2}\right)$. Let O_{1} and O_{2} be small neighborhoods of the points x_{1} and x_{2} correspondingly. The integral I becomes

$$
\begin{equation*}
I=\int_{O_{1}} \frac{d y}{\left|g^{\prime}\left(x_{1}+y\right)\right|} f\left(x_{1}+y\right) \delta(y)+\int_{O_{2}} \frac{d y}{\left|g^{\prime}\left(x_{2}+y\right)\right|} f\left(x_{2}+y\right) \delta(y), \tag{2}
\end{equation*}
$$

where we made the change of variable $y=x-x_{1}$ in the first integral, $y=x-x_{2}$ in the second integral, and used the property of the delta-function

$$
\begin{equation*}
\delta(\alpha x)=\frac{1}{|\alpha|} \delta(x), \tag{3}
\end{equation*}
$$

with α some constant. Taking the integrals, we have

$$
\begin{equation*}
I=\frac{f\left(x_{1}\right)}{\left|g^{\prime}\left(x_{1}\right)\right|}+\frac{f\left(x_{2}\right)}{\left|g^{\prime}\left(x_{2}\right)\right|} . \tag{4}
\end{equation*}
$$

Finally, $\left|g^{\prime}\left(x_{1}\right)\right|=\left|g^{\prime}\left(x_{2}\right)\right|=\left|a\left(x_{1}-x_{2}\right)\right|=\sqrt{b^{2}-4 a c}$, and

$$
\begin{equation*}
I=\left(f\left(x_{1}\right)+f\left(x_{2}\right)\right)\left(b^{2}-4 a c\right)^{-1 / 2} . \tag{5}
\end{equation*}
$$

- Suppose now that $x_{1}=x_{2}=x_{0}$. Expanding $g(x)$ around x_{0} and changing the variable $y=x-x_{0}$, we arrive at

$$
I=\int_{-\infty}^{\infty} \frac{d y f\left(x_{0}+y\right)}{\left|g^{\prime}\left(x_{0}+y\right)\right|} \delta(y)=\lim _{x \rightarrow x_{0}} \frac{f(x)}{2\left|a\left(x-x_{0}\right)\right|}=\left\{\begin{array}{l}
\infty, \quad f\left(x_{0}\right) \neq 0, \tag{6}\\
\frac{f^{\prime}\left(x_{0}\right)}{2|a|}, \quad f\left(x_{0}\right)=0 .
\end{array}\right.
$$

2. Recall that

$$
\begin{equation*}
\delta(f(x))=\sum_{i} \frac{\delta\left(x-x_{i}\right)}{\left|f^{\prime}\left(x_{i}\right)\right|} \tag{7}
\end{equation*}
$$

where i numerates the roots of the function f. In our case $E_{p}=\frac{p^{2}}{2 m}$, and

$$
\begin{align*}
\int d^{3} \mathbf{p} \delta\left(E_{p^{\prime}}-E_{p}\right) f(\mathbf{p}) & =\int d \Omega d p p^{2} \delta\left(E_{p}-E_{p^{\prime}}\right) f(\mathbf{p}) \\
& =\int d \Omega d p p^{2} \delta\left(p-p^{\prime}\right) \frac{2 m}{2 p^{\prime}} f(\mathbf{p}) \tag{8}\\
& =m p^{\prime} \int d \Omega f(\mathbf{n})
\end{align*}
$$

where

$$
\begin{equation*}
\mathbf{n}=\left|\mathbf{p}^{\prime}\right| \frac{\mathbf{p}}{|\mathbf{p}|} \tag{9}
\end{equation*}
$$

is a vector of modulus $\left|\mathbf{p}^{\prime}\right|$ in the direction of \mathbf{p}.

2. Free particle's Green function in three dimensions

1. By definition,

$$
\begin{equation*}
\hat{G}_{0}(z)=\frac{1}{z-\hat{H}_{0}} \tag{10}
\end{equation*}
$$

This means that

$$
\begin{equation*}
\hat{G}_{0}(z)|\mathbf{p}\rangle=\frac{1}{z-E_{p}}|\mathbf{p}\rangle, \quad E_{p}=\frac{p^{2}}{2 m} . \tag{11}
\end{equation*}
$$

Therefore,

$$
\begin{equation*}
\langle\mathbf{x}| \hat{G}_{0}(z)\left|\mathbf{x}^{\prime}\right\rangle=\int d^{3} \mathbf{p}\langle\mathbf{x}| \hat{G}_{0}(z)|\mathbf{p}\rangle\left\langle\mathbf{p} \mid \mathbf{x}^{\prime}\right\rangle=\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{p} \frac{e^{i \mathbf{p} \cdot\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}}{z-E_{p}} . \tag{12}
\end{equation*}
$$

2. Let us first compute the radial part of the integral :

$$
\begin{align*}
\langle\mathbf{x}| \hat{G}_{0}(z)\left|\mathbf{x}^{\prime}\right\rangle & =2 \pi \frac{1}{(2 \pi)^{3}} \int_{0}^{\infty} d p p^{2} \int_{0}^{\pi} d \theta \sin \theta \frac{e^{i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right| \cos \theta}}{z-E_{p}} \\
& =-\frac{1}{(2 \pi)^{2}} \int_{0}^{\infty} d p \frac{p^{2}}{i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \frac{1}{z-E_{p}}\left(e^{i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-e^{-i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \tag{13}\\
& =\frac{i m}{2 \pi^{2}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \int_{-\infty}^{\infty} d p p \frac{e^{i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{2 m z-p^{2}} .
\end{align*}
$$

The resulting integral can be computed by the method of residues. To this end, we close the contour of integration in the plane of complex p as shown in figure 1. This does not change the value of the integral, since in the upper half-plane the integrand approaches zero exponentially fast when the radius of the semi-circle goes to infinity. The integrand has two poles at $p= \pm \sqrt{2 m z}$. Recall that $z=E+i \epsilon$, $\epsilon>0$, hence the pole contributing to the integral is the one at $p=+\sqrt{2 m z}$. Thus,

$$
\begin{align*}
\langle\mathbf{x}| \hat{G}_{0}(z)\left|\mathbf{x}^{\prime}\right\rangle & =\frac{i m}{2 \pi^{2}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} 2 \pi i \operatorname{res}_{p=\sqrt{2 m z}} \frac{p e^{i p\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{(p-\sqrt{2 m z})(p+\sqrt{2 m z})} \tag{14}\\
& =-\frac{m}{2 \pi} \frac{e^{i \sqrt{2 m z}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}
\end{align*}
$$

3. The formula (12) tells us that the Fourier transform of the function $G_{0}\left(z, \mathbf{x}, \mathbf{x}^{\prime}\right)=$ $\langle\mathbf{x}| \hat{G}_{0}(z)\left|\mathbf{x}^{\prime}\right\rangle$ is

$$
\begin{equation*}
G_{0}\left(z, \mathbf{p}, \mathbf{p}^{\prime}\right)=\delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \frac{1}{z-E_{p}} \tag{15}
\end{equation*}
$$

This implies in particular the conservation of the free particle momentum. We now use the momentum representation of the Green function to yield

$$
\begin{align*}
& \langle\mathbf{x}|\left(z-\hat{H}_{0}\right) \hat{G}_{0}(z)\left|\mathbf{x}^{\prime}\right\rangle=\int d^{3} \mathbf{p} d^{3} \mathbf{p}^{\prime} d^{3} \mathbf{p}^{\prime \prime}\langle\mathbf{x} \mid \mathbf{p}\rangle\langle\mathbf{p}| z-\hat{H}_{0}\left|\mathbf{p}^{\prime \prime}\right\rangle\left\langle\mathbf{p}^{\prime \prime}\right| \hat{G}_{0}(z)\left|\mathbf{p}^{\prime}\right\rangle\left\langle\mathbf{p}^{\prime} \mid \mathbf{x}^{\prime}\right\rangle \\
& =\frac{1}{(2 \pi)^{3}} \int d^{3} \mathbf{p} d^{3} \mathbf{p}^{\prime} d^{3} \mathbf{p}^{\prime \prime} e^{i \mathbf{p} \cdot \mathbf{x}} \delta\left(\mathbf{p}-\mathbf{p}^{\prime \prime}\right)\left(z-E_{p^{\prime \prime}}\right) \delta\left(\mathbf{p}^{\prime \prime}-\mathbf{p}^{\prime}\right) \frac{1}{z-E_{p^{\prime}}} e^{-i \mathbf{p}^{\prime} \cdot \mathbf{x}^{\prime}} \tag{16}\\
& =\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} \mathbf{p} d^{3} \mathbf{p}^{\prime} e^{i \mathbf{p} \cdot \mathbf{x}} e^{-i \mathbf{p}^{\prime} \cdot \mathbf{x}^{\prime}} \delta\left(\mathbf{p}-\mathbf{p}^{\prime}\right) \\
& =\frac{1}{(2 \pi)^{3 / 2}} \int d^{3} \mathbf{p} e^{i \mathbf{p}\left(\mathbf{x}-\mathbf{x}^{\prime}\right)}=\delta\left(\mathbf{x}-\mathbf{x}^{\prime}\right)
\end{align*}
$$

Fig. 1 - The contour of integration
4. The matrix element $G_{0}\left(z, \mathbf{x}, \mathbf{x}^{\prime}\right)$ as a function of the complex variable z has a branch cut along the real positive values of z. To calculate the difference between the points on the opposite sides of the branch cut, one should continue analytically the function \sqrt{z} from the one side to another. This gives,

$$
\begin{align*}
G_{0}\left(E+i \epsilon, \mathbf{x}, \mathbf{x}^{\prime}\right)-G_{0}\left(E-i \epsilon, \mathbf{x}, \mathbf{x}^{\prime}\right) & =-\frac{m}{2 \pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\left(e^{i \sqrt{2 m E}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}-e^{-i \sqrt{2 m E}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}\right) \\
& =-\frac{i m}{\pi\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \sin \left(\sqrt{2 m E}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|\right) \tag{17}
\end{align*}
$$

5. For large values of $x=|\mathbf{x}|$, the modulus $\left|\mathbf{x}-\mathbf{x}^{\prime}\right|$ can be expanded as

$$
\begin{equation*}
\left|\mathbf{x}-\mathbf{x}^{\prime}\right|=x \sqrt{1-\frac{2 \mathbf{x} \cdot \mathbf{x}^{\prime}}{x^{2}}+\frac{x^{\prime 2}}{x^{2}}} \approx x-\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{x} . \tag{18}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
G_{0}\left(z, \mathbf{x}, \mathbf{x}^{\prime}\right) \approx-\frac{m}{2 \pi} \frac{\exp \left[i \sqrt{2 m z}\left(x-\frac{\mathbf{x} \cdot \mathbf{x}^{\prime}}{x}\right)\right]}{x}, \quad x \rightarrow \infty \tag{19}
\end{equation*}
$$

Semiclassical S-matrix in one dimension

There is no easy way to do the integral with this transmission coefficient. You should replace that with $D(p)=1-e^{-p^{2} / p_{0}^{2}}$.

We want to compute the matrix element

$$
\begin{equation*}
S\left(\rho, \sigma, \rho^{\prime}, \sigma^{\prime}\right)=\int d x d y\left\langle\psi_{\rho^{\prime} \sigma^{\prime}}, x\right\rangle\langle x| S|y\rangle\left\langle y, \psi_{\rho \sigma}\right\rangle \tag{20}
\end{equation*}
$$

By inserting the a complete set of momentum states we also know

$$
\begin{equation*}
\langle x| S|y\rangle=\int d q d q^{\prime}\langle x, q\rangle\langle q| S\left\langle q^{\prime}, y\right\rangle \tag{21}
\end{equation*}
$$

Finally the question says that we should consider $\psi_{\text {out }}$ to just be the transmitted wave. So we find that $\langle q| S\left|q^{\prime}\right\rangle=D(p) \delta(p-p)$. Here the delta function enforces that the wave is transmitted $p=p^{\prime}$. (If we also consider the reflected wave part of $\psi_{\text {out }}$ there would be another matrix element with $T(p) \delta p+p^{\prime}$.

That leaves only an integral to be done (see the attached Mathematica file).

