Solutions Série 9

Solution 1. 1. To show that $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$ is a group. We first observe that the identity map Id : $\operatorname{Id}(\mathbf{P})=\mathbf{P}$ is in $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$. Also if $\phi_{1}, \phi_{2} \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$, then so is the composition $\phi_{1} \circ \phi_{2}$, since $\left(\phi_{1} \circ \phi_{2}\right)(\mathbf{P})=\left(\phi_{1}\right)\left(\phi_{2}(\mathbf{P})\right)=\phi_{1}(\mathbf{P})=\mathbf{P}$. Finally, if $\phi \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$, that is $\phi(\mathbf{P})=\mathbf{P}$, then $\phi^{-1}(\mathbf{P})=\mathbf{P}$, so that the inverse ϕ^{-1} of ϕ is also inside $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$. Therefore $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$ is a group.
2. We claim that $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\psi(\mathbf{P})}=\psi \circ \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}} \circ \psi^{-1}$. To see this, for any $f \in$ $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\psi(\mathbf{P})}($ so that $f(\psi(\mathbf{P}))=\psi(\mathbf{P}))$, one has $f=\psi \circ g \circ \psi^{-1} \in \psi \circ \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}} \circ$ ψ^{-1}, where $g=\psi^{-1} f \psi \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$, because $g(\mathbf{P})=\psi^{-1} f(\psi(\mathbf{P}))=\psi^{-1}(\psi(\mathbf{P}))=$ \mathbf{P}. Conversely, for any element $h \in \psi \circ \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}} \circ \psi^{-1}$, we need to show $h \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\psi(\mathbf{P})}$. The assumption $h \in \psi \circ \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}} \circ \psi^{-1}$ implies that there exists $g \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}$ such that $h=\psi \circ g \circ \psi^{-1}$. Then $h(\psi(\mathbf{P}))=$ $\left(\psi \circ g \circ \psi^{-1}\right)(\psi(\mathbf{P}))=(\psi \circ g)(\mathbf{P})=\psi(\mathbf{P})$, so that indeed $h \in \operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\psi(\mathbf{P})}$.

Solution. 4.

1. Let $t_{1}=t_{(1,0)}$, the translation by the vector $(1,0)$, and let $t_{2}=t_{(0,1)}$, the translation by the vector $(0,1)$. Then any translation $t_{\vec{v}} \in T(G)=T\left(\mathbb{R}^{2}\right) \cap G$ can in fact be written as $t_{\vec{v}}=m t_{1}+n t_{2}=t_{m(1,0)}+t_{n(0,1)}=t_{(m, n)}$, translation by $\vec{v}=(m, n)=m+n i$, for some $m, n \in \mathbb{Z}$. So that $T(G) \cong \mathbb{Z}+\mathbb{Z} i$, where $\mathbb{Z}+\mathbb{Z} i=\{m+n i: m \in \mathbb{Z}, n \in \mathbb{Z}\} \subset \mathbb{C}$.
2. Let $r=r_{i, 0}: z \mapsto i z$ be a rotation. Then $r^{2}: z \mapsto i^{2} z, r^{3}: z \mapsto i^{3} z=-i z$, and $r^{4}: z \mapsto i^{4} z=z$ (which is the identity map Id). Let $s: z \mapsto \bar{z}$ be the symmetry (with respect to the x-axis), which is of order 2. Then $G_{0}=\langle r, s\rangle=$ $\left\{e, r, r^{2}, r^{3}, s, s r, s r^{2}, s r^{3}\right\}$ is a Dihedral group. We can write G_{0} as the disjoint union of G_{0}^{+}and $G_{0}^{-}: G_{0}=G_{0}^{+} \sqcup G_{0}^{-}$, where $G_{0}^{+}=\langle r\rangle=\left\{e, r, r^{2}, r^{3}\right\}$ and $G_{0}^{-}=s\langle r\rangle=\left\{s, s r, s r^{2}, s r^{3}\right\}$. Now we can identify any element r^{k} in G_{0}^{+}with a transformation of complex numbers : $r^{k}: z \mapsto i^{k} z$. That is, $r^{k}(z)=r_{i^{k}, 0}(z)$, where $k \in\{0,1,2,3\}$.
3. In part 2, we remarked that $G_{0}-G_{0}^{+}=G_{0}^{-}=s\langle r\rangle=\left\{s, s r, s r^{2}, s r^{3}\right\}$, where $r(z)=r_{i, 0}(z)=i z$ is a rotation by a complex number i and $s(z)=\bar{z}$ is a symmetry. Any element $s r^{k}$ of G_{0}, where $k \in\{0,1,2,3\}$, can be written in terms of transformation of complex numbers : $\left(s r^{k}\right)(z)=s\left(i^{k} z\right)=\overline{i^{k} z}=i^{-k} \bar{z}$. That is, $s r^{k}(z)=s_{i^{k}, 0}(z)$, for $k \in\{0,1,2,3\}$.
4. First any $\phi \in G$ can be written as $\phi=t \circ \phi_{0}$, where $t=t_{\phi(\mathbf{0})} \in T(G)$ and $\phi_{0}=t_{-\phi(\mathbf{0})} \circ \phi \in G_{0}$. Now we would like to show that the expression $\phi=t \circ \phi_{0}$
is unique. For this we first notice that $T(G) \cap G_{0}=\{\operatorname{Id}\}$, since for any $t_{\vec{v}} \in$ $T(G) \cap G_{0}$ we must have $t_{\vec{v}}(\mathbf{0})=\mathbf{0}+\vec{v}=\mathbf{0}$, which implies that $\vec{v}=\mathbf{0}$, so that $t_{\vec{v}}=t_{\mathbf{0}}$ is the identity map Id. Now suppose we have $\phi=t \circ \phi_{0}=t^{\prime} \circ \phi_{0}^{\prime}$, where $t, t^{\prime} \in T(G)$ and $\phi_{0}, \phi_{0}^{\prime} \in G_{0}$. Then $t^{\prime-1} \circ t=\phi_{0}^{\prime} \circ \phi_{0}^{-1} \in T(G) \cap G_{0}=\{\operatorname{Id}\}$, which implies $t=t^{\prime}$ and $\phi_{0}=\phi_{0}^{\prime}$, showing that the decomposition $\phi=t \circ \phi_{0}$ is indeed unique.

To write element $\phi=t \circ \phi_{0}$ of G as transformations on complex numbers, we separate into two cases : either $\phi_{0} \in G_{0}^{+}$, or $\phi_{0} \in G_{0}^{-}$. By Part 1, we know one can write any $t \in T(G)$ as $t=t_{m+n i}$, translation by $(m, n)=m+n i$ for some $m, n \in \mathbb{Z}$.
Case a : If $\phi_{0} \in G_{0}^{+}=\left\{e, r, r^{2}, r^{3}\right\}$, then $\phi_{0}=r^{k}$, so that $t \circ \phi_{0}(z)=t_{m+n i} \circ$ $r^{k}(z)=t_{m+n i}\left(i^{k} z\right)=i^{k} z+m+n i=r_{i^{k}, m+n i}(z)$, for some $k \in\{0,1,2,3\}$.
Case b : If $\phi_{0} \in G_{0}^{-}=\left\{s, s r, s r^{2}, s r^{3}\right\}$, then one can write $\phi_{0}=s r^{k}$ for some $k \in\{0,1,2,3\}$, and then $t \circ \phi_{0}(z)=t_{m+n i}\left(s r^{k}(z)\right)=t_{m+n i} \circ s\left(i^{k} z\right)=$ $t_{m+n i}\left(\overline{i^{k} z}\right)=\overline{i^{k} z}+m+n i=s_{i^{k}, m+n i}(z)$.
5. Denote by $t_{\vec{u}}$ translation by the vector $\vec{u}=(1 / 4,1 / 4)=1 / 4+1 / 4 i$. Recall Exercise 1 Q. 2 says that for any isometry ψ, one has $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\psi(\mathbf{P})}=\psi \circ$ $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}} \circ \psi^{-1}$. In particular, let $\mathbf{P} \subset \mathbb{R}^{2}$ be the "figure 2 " in our question then $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{\mathbf{P}}=G$. By letting $\psi=t_{\vec{u}}$ we have $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{t_{\vec{u}}(\mathbf{P})}=t_{\vec{u}} \circ G \circ t_{\vec{u}}^{-1}=$ $t_{\vec{u}} \circ G \circ t_{-\vec{u}}$.
As in Part 4, we consider two cases, depending on whether $\phi_{0} \in G_{0}^{+}$or $\phi_{0} \in G_{0}^{-}$ for $\phi=t \circ \phi_{0}=t_{m+n i} \circ \phi_{0} \in G$.
Case (i). In the former case, any element of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{t_{\bar{u}}(\mathbf{P})}$ can be identified with the transformation : $t_{\vec{u}} \circ\left(t_{m+n i} \circ r^{k}\right) \circ t_{-\vec{u}}(z)=\left(t_{1 / 4+1 / 4 i} \circ t_{m+n i}\right) \circ r^{k}(z-1 / 4-$ $1 / 4 i)=t_{m+1 / 4+(n+1 / 4) i}\left(i^{k}(z-1 / 4-1 / 4 i)\right)=i^{k}(z-1 / 4-1 / 4 i)+m+\frac{1}{4}+\left(n+\frac{1}{4}\right) i=$ $i^{k} z+m+\frac{1}{4}+\left(n+\frac{1}{4}\right) i-i^{k}\left(\frac{1}{4}+\frac{1}{4} i\right)=r_{i^{k}, \nu}(z)$, where $\nu=\left(n+\frac{1}{4}\right) i-i^{k}\left(\frac{1}{4}+\frac{1}{4} i\right)$, $k \in\{0,1,2,3\}$ and $m, n \in \mathbb{Z}$.
Case (ii). In the latter case, that is, if $\phi=t \circ \phi_{0}=t_{m+n i} \circ \phi_{0} \in G$ with $\phi_{0} \in G_{0}^{-}=\left\{s, s r, s r^{2}, s r^{3}\right\}$, then any element of $\operatorname{Isom}\left(\mathbb{R}^{2}\right)_{t_{\bar{u}}(\mathbf{P})}$ can be identified with the transformation : $t_{\vec{u}} \circ\left(t_{m+n i} \circ s r^{k}\right) \circ t_{-\vec{u}}(z)=t_{1 / 4+1 / 4 i} \circ t_{m+n i} \circ s r^{k}(z-1 / 4-$ $\frac{1 / 4 i)=t_{m+1 / 4+(n+1 / 4) i} \circ s\left(i^{k}(z-1 / 4-1 / 4 i)\right)=t_{m+1 / 4+(n+1 / 4) i}\left(\overline{i^{k}(z-1 / 4-1 / 4 i)}\right)=. \quad{ }^{k}(z-1 / 4-1 / 4 i)}{}$ $\overline{i^{k}(z-1 / 4-1 / 4 i)}+m+\frac{1}{4}+\left(n+\frac{1}{4}\right) i=i^{-k} \bar{z}+i^{-k}\left(-\frac{1}{4}+\frac{1}{4} i\right)+m+\frac{1}{4}+\left(n+\frac{1}{4}\right) i=$ $s_{i^{k}, \nu}(z)$, where $\nu=i^{-k}\left(-\frac{1}{4}+\frac{1}{4} i\right)+m+\frac{1}{4}+\left(n+\frac{1}{4}\right) i, k \in\{0,1,2,3\}$ and $m, n \in \mathbb{Z}$.

