
QUANTUM PHYSICS III
Solutions to Problem Set 12 8 December 2017

1. Scattering in a square-well potential

1. Substituting the potential

V(r) =

{
− V0 , r < R ,

0 , r > R
(1)

into eq. (??), we have

f (p→ p′) =
2mV0

q

∫ R

0
dr r sin qr . (2)

Integrating by parts and taking a square, we obtain

dσ
dΩ

= 4R6m2V2
0

(sin qR − qR cos qR)2

(qR)6 . (3)

The plot of this differential cross section in the units qR is shown in figure 1.

π 1.43 π 2 π
qR

dσ

dΩ

Fig. 1 – The plot of dσ/dΩ given by eq. (3) (not to scale).

2. Note that the distribution (3) develops a zero at the value of qR such that qR =

tan qR, i.e., at qR ≈ 1.43π. Hence, by measuring the angle θ∗ in which no scattering
occurs, one can extract the value of R,

R ≈
1.43π

2p sin θ∗
2

. (4)
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3. In order that R may be found from the measuring of the zero point of the differential
cross section (3), the maximum value of qR, 2pR, must be larger than 1.43π, or

E >
~2

2mp

(
1.43π

2R

)2

=
(1.43π)2

8
~2

mpc2

( c
R

)2

=
(1.43π)2

8
·

(6.58 · 10−22)2

938
·

(
3 · 1010

5 · 10−13

)2

= 4.2 MeV ,

(5)

where we restored ~ and c for numerical calculations.

4. From the formula for the momentum transfer, q = 2p sin
θ

2
, it follows that

dΩ = dφ d cos θ = 2π
qdq
p2 . (6)

Therefore,

σ =

∫ 2p

0

dσ
dΩ

2πqdq
p2 . (7)

Substituting eq. (3) we arrive after multiple integration by parts at

σ =
2π
p2 (mV0R2)2

[
1 −

1
(2pR)2 +

sin 4pR
(2pR)3 −

sin2 2pR
(2pR)4

]
. (8)

5. The slow scattering implies that the wave length λ ∼ p−1 of the scattered particles
exceeds significantly the characteristic size of the potential. In our case this means
pR � 1. Hence, to find the total cross section in this limit, we expand eq. (8) to the
first nontrivial order in pR. This gives

σ =
16πR2

9
(mV0R2)2 . (9)

We observe that in the slow scattering regime the total cross section shows no de-
pendence on the incident momentum of the particles. This is consistent with expec-
tations, since the scattering amplitude (??) itself becomes independent of q in the
limit q→ 0.

6. In the limit of fast scattering, pR � 1, we have

σ =
2π
p2 (mV0R2)2 . (10)

In agreement with expectations, the cross section goes to zero as the energy of the
particles increases.

2. Towards the inverse scattering problem

2



1. Let R be the characteristic size of the potential V(r). The scattering amplitude at
zero momentum transfer f0 is given by

f0 ≈ − lim
q→0

2m
q

∫ R

0
dr rV(r) sin qr = −2m

∫ R

0
dr r2V(r) . (11)

Next, we compute the amplitude assuming that qR � 1, this gives

f (q) ≈ −
2m
q

∫ R

0
dr rV(r)

(
qr −

1
6

(qr)3
)

= f0 − f0
(qR)2

10
.

(12)

From here, one can extract the size R as

R2 ≈
10
f0

f0 − f (q)
q2 ≈

10
f0

| f ′(q)|
q
≈

10C
f0

. (13)

2. Assume that at small distances the potential exhibits the power-like behavior, V(r) ∼
rn. Then,

f (q) ≈ −
2m
q

∫ R

0
dr rn+1 sin qr = −

2m
qn+3

∫ qR

0
dy yn+1 sin y , (14)

where we denoted y = qr. If qR � 1, one can replace the upper limit of integration
in the r.h.s. by infinity, hence at the large momentum transfers

f (q) ∼
1

qn+3 . (15)

Comparing this with the given data gives N
2 = n + 3, and

V(r) ∼ r
N
2 −3 , r → 0 . (16)

3. Truncation of the Coulomb potential

1. For the exponential shielding we find

f1(p→ p′) = −
2m
q

∫ ∞

0
dr r

α

r
e−

r
ρ sin qr

= −
2mα
2iq

∫ ∞

0
dr

(
er

(
iq− 1

ρ

)
− er

(
iq− 1

ρ

))
= −

iαm
q

 1
iq + 1

ρ

+
1

iq − 1
ρ

 = −
2αm

q2 + ρ−2 .

(17)

Note that the limit ρ → ∞ is well-defined unless q = 0. Hence, except for the
forward scattering cone, the amplitude for the exponentially truncated potential is
ρ-independent for ρ large enough. In fact, in this limit f1 reproduces the correct
scattering amplitude for the Coulomb potential.
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2. Evaluation of the sharp cutoff gives,

f2(p→ p′) = −
2m
q

∫ ρ

0
dr r

α

r
sin qr = −

2mα
q2 (1 − cos qρ) . (18)

This is again a well-defined expression but the one which has no limit at ρ→ ∞. We
conclude that the answer for the scattering amplitude depends on how the truncation
of the Coulomb potential is made. At first sight this fact seems distressing, but let us
see how the truncation affects the quantities one can actually observe in experiment.

3. Let us assume that qρ � 1, or

ρ �
1

2p sin θ
2

, (19)

which can always be justified unless θ = 0. Then, the ratio of the amplitudes (18)
and (17) averaged over the range of the scattering angles from θ to θ + ∆θ is equal
to

1
∆θ

∫ θ+∆θ

θ

dθ′
∣∣∣∣∣ f2(θ′)
f1(θ′)

∣∣∣∣∣ = 1 −
1

∆θ

∫ θ+∆θ

θ

dθ′ cos
(
2pρ sin

θ

2

)
. (20)

The integrand in the second term is a rapidly oscillating function that is integrated
to zero provided that

2pρ
(
sin

θ + ∆θ

2
− sin

θ

2

)
� 2π . (21)

For θ , π, one can expand the sin to the first power in ∆θ to obtain from eq. (21)

2pρ
1
2

∆θ

2
cos

θ

2
� 2π ⇒ ρ � ρ0 =

4π
p∆θ cos θ

2

. (22)

For θ = π, we expand the sin to the second power in ∆θ and find

2pρ
∆θ2

8
� 2π ⇒ ρ � ρ0 =

8π
p∆θ2 . (23)

4. Given the in wave packet Ψin(p), the out wave function Ψout(p) is evaluated in the
first Born approximation as

Ψout(p) = Ψin(p) +
i

2πm

∫
d3p′δ(Ep − Ep′) f (p→ p′)Ψin(p′)

= Ψin(p) +
ip
2π

∫
dΩp′ f (p→ p′)Ψin(p′) .

(24)

In this expression, the first term represents the unscattered incident wave, and to
avoid seeing this term one normally restricts the measurements to non-forward di-
rections. Then, the difference between the amplitudes f1 and f2 contains the rapidly
oscillating term

cos qρ = cos
(
2pρ sin

θ

2

)
, θ , 0 , (25)

which, for ρ exceeding the size of the initial wave packet, integrates out to zero, and
makes no contribution to Ψout(p). Thus, the difference between the two methods of
screening the Coulomb potential has no observable effect.
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4∗. The nucleus form factor

1. The potential V(r) created by the charge distribution ρ(r) satisfies Poisson’s equa-
tion

∇2V(r) =
1
r

d2

dr2 (rV(r)) = 4πeρ(r) . (26)

By eq. (??),

f (p→ p′) = −
2m
q

∫ ∞

0
dr rV(r) sin qr

=
2m
q2

[
rV(r) cos qr

]r=∞
r=0 −

2m
q2

∫ ∞

0
dr (rV(r))′ cos qr

=
2m
q2

[
rV(r) cos qr −

1
q

(rV(r))′ sin qr
]r=∞

r=0
+

2m
q3

∫ ∞

0
dr (rV(r))′′ sin qr .

(27)

It is clear that at large distances the real nucleus potential V(r) becomes indistin-
guishable from the potential V0(r) created by the point nucleus. Therefore, there ap-
pears a problem of how to treat the scattering amplitudes computed for the Coulomb-
like potential for which the standard scattering theory is inapplicable. In eq. (27),
the problem is revealed by noticing that the boundary terms in the last line do not
vanish. Instead of developing a new scattering theory, it takes much less efforts to
regularize the potential, i.e., to assume that at very large distances V(r) and V0(r)
become falling off sufficiently fast to ensure the validness of the conventional scatte-
ring amplitudes. We do not discuss possible physical mechanisms of such suppres-
sion ; in fact, we assume that it happens at the distances far beyond the scattering
region we are interested in. For our results to make sense, one has to make sure
that the physical observables are independent of a particular way of regularization
(which is true), and that they are consistent with the results obtained within the
rigorous approach (which is also true). Bearing the above in mind, we write

V(r) , V0(r) ∼
Ze2

r
e−αr , r → ∞ . (28)

The original potentials are restored in the limit α→ 0. In this regularization

f (p→ p′) =
8πme

q3

∫ ∞

0
dr rρ(r) sin qr , (29)

while for the point-like nucleus

f0(p→ p′) =
2m
q

∫ ∞

0
dr Ze2e−αr sin qr

=
2mZe2

q
q

q2 + α2 .

(30)

We observe that after the scattering amplitude is computed, one can safely remove
the regularization by sending α to 0. Then, comparing eqs. (29) and (30), we obtain

F(q2) =
4π
Ze

∫ ∞

0
dr r2ρ(r)

sin qr
qr

. (31)
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The generalization to the case of non-spherically symmetric charge distributions is
therefore

F(q2) =
1

Ze

∫
dx ρ(x)e−iq·x . (32)

That is, the form factor is the Fourier transform of the charge distribution.

2. Differentiating eq. (31) with respect to q, we have

dF
dq

=
4π
Ze

∫ ∞

0
dr r2ρ(r)

[
r cos qr

qr
−

sin qr
q2r

]
, (33)

and
dF

d(q2)
=

dF
dq

dq
d(q2)

=
1

2q
·

dF
dq

. (34)

To find dF/d(q2) at q2 = 0, we first compute

lim
q→0

[
r cos qr

qr
−

sin qr
q2r

]
= lim

q→0

r ·
(
1 − 1

2 (qr)2
)

q2r
−

qr − 1
6 (qr)3

q3r


= lim

q→0

(
−

r2

3

)
= −

r2

3
.

(35)

Then
dF

d(q2)

∣∣∣∣∣
q2=0

= −
1
6
·

1
Ze

∫ ∞

0
dr r2ρ(r) · 4πr2 = −

1
6
〈r2〉 . (36)

Thus, the mean-square radius of the proton is found from the experimental data as

〈r2〉 = −6
dF

d(q2)

∣∣∣∣∣
q2=0

. (37)

Numerically √
〈r2〉 ≈ 0.87 · 10−13 cm . (38)

This quantity is also called the charge radius of the proton.
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