1. Cauchy's theorem and the completeness relation

Let us compute directly the integral of $\hat{G}(z)$ over the contour C. The integral over the semi-circle gives

$$
\begin{align*}
\int_{\text {circle }} \frac{d z}{z-\hat{H}} & =\lim _{R \rightarrow \infty} R \int_{0}^{2 \pi} \frac{d \phi i e^{i \phi}}{R e^{i \phi}-\hat{H}} \\
& =\lim _{R \rightarrow \infty}\left[\log \left(e^{i \phi}-\frac{\hat{H}}{R}\right)_{\phi=2 \pi}-\log \left(e^{i \phi}-\frac{\hat{H}}{R}\right)_{\phi=0}\right]=2 \pi i . \tag{1}
\end{align*}
$$

The integral over the branch cut is computed as follows,

$$
\begin{align*}
\int_{\text {branch cut }} \hat{G}(z) d z & =\int_{0}^{\infty} d x \int d p|p\rangle\langle p|\left(\frac{1}{x+i \epsilon-E_{p}}-\frac{1}{x-i \epsilon-E_{p}}\right) \tag{2}\\
& =-2 \pi i \int d p|p\rangle\langle p|
\end{align*}
$$

where $|p\rangle$ denote eigenstates of the continuous spectrum of \hat{H}, and we used the completeness of the eigenstates. Summing up the contributions (1) and (2), we obtain

$$
\begin{align*}
\oint_{C} \hat{G}(z) d z & =2 \pi i\left(\sum_{n}|n\rangle\langle n|+\int d p|p\rangle\langle p|\right)-2 \pi i \int d p|p\rangle\langle p| \tag{3}\\
& =2 \pi i \sum_{n}|n\rangle\langle n| .
\end{align*}
$$

This result tells us that the integral is given by the sum of the residues computed at the poles of $\hat{G}(z)$ located inside the contour. Hence, we recovered the Cauchy theorem.

2. Scattering amplitude in a spherically-symmetric potential

1. In the first Born approximation the scattering amplitude is written as

$$
\begin{equation*}
f\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right)=-\frac{m}{2 \pi} \int d^{3} \mathbf{x} V(\mathbf{x}) e^{-i \boldsymbol{q} \cdot \mathbf{x}} \tag{4}
\end{equation*}
$$

where $\mathbf{q}=\mathbf{p}^{\prime}-\mathbf{p}$ is the momentum transfer. For a spherically symmetric potential this expression reduces to

$$
\begin{align*}
f\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right) & =-m \int_{0}^{\infty} d r r^{2} V(r) \int_{0}^{\pi} d \theta \sin \theta e^{-i q r \cos \theta} \\
& =m \int_{0}^{\infty} d r r^{2} V(r) \frac{e^{i q r}-e^{-i q r}}{-i q r} \tag{5}\\
& =-\frac{2 m}{q} \int_{0}^{\infty} d r r \sin (q r) V(r) .
\end{align*}
$$

2. With the potential

$$
\begin{equation*}
V(r)=V_{0} e^{-r^{2} / a^{2}} \tag{6}
\end{equation*}
$$

the formula (5) becomes

$$
\begin{align*}
f\left(\mathbf{p} \rightarrow \mathbf{p}^{\prime}\right) & =-\frac{2 m V_{0}}{q} \int_{0}^{\infty} d r r e^{-r^{2} / a^{2}} \sin (q r)=-\frac{m V_{0}}{q} \int_{-\infty}^{\infty} d r r e^{-r^{2} / a^{2}} \sin (q r) \\
& =-\frac{m V_{0} a^{2}}{2} \int_{-\infty}^{\infty} d r e^{-r^{2} / a^{2}} \cos (q r)=-\frac{m V_{0} a^{3}}{2} \int_{-\infty}^{\infty} d r e^{-r^{2}} \cos (q a r) \tag{7}\\
& =-\frac{m V_{0} a^{3}}{4} \int_{-\infty}^{\infty} d r e^{-q^{2} a^{2} / 4}\left(e^{-(r-i q a / 2)^{2}}+e^{-(r+i q a / 2)^{2}}\right) \\
& =-\frac{m V_{0} a^{3}}{2} \sqrt{\pi} e^{-q^{2} a^{2} / 4},
\end{align*}
$$

where in going to the second line we integrated by parts. Hence,

$$
\begin{equation*}
\frac{d \sigma}{d \Omega}=\frac{\pi m^{2} V_{0}^{2} a^{6}}{4} e^{-q^{2} a^{2} / 2} \tag{8}
\end{equation*}
$$

3. Applicability condition of the first Born approximation

1. First, we rewrite the difference $\Psi_{i n}(\mathbf{x})-\Psi_{0}(\mathbf{x})$ by using the relation between $\Psi_{i n}(\mathbf{x})$ and $\Psi_{0}(\mathbf{x})$,

$$
\begin{align*}
\Psi_{0}(\mathbf{x}) & =\Psi_{i n}(\mathbf{x})+\int d^{3} \mathbf{p}\langle\mathbf{x}| \hat{G}\left(E_{p}+i \epsilon\right) \hat{V}|\mathbf{p}\rangle\left\langle\mathbf{p} \mid \Psi_{i n}\right\rangle \\
& =\Psi_{i n}(\mathbf{x})+\int d^{3} \mathbf{p} d^{3} \mathbf{x}^{\prime} d^{3} \mathbf{x}^{\prime \prime}\langle\mathbf{x}| \hat{G}\left(E_{p}+i \epsilon\right)\left|\mathbf{x}^{\prime}\right\rangle\left\langle\mathbf{x}^{\prime}\right| \hat{V}\left|\mathbf{x}^{\prime \prime}\right\rangle\left\langle\mathbf{x}^{\prime \prime} \mid \mathbf{p}\right\rangle\left\langle\mathbf{p} \mid \Psi_{i n}\right\rangle \tag{9}\\
& =\Psi_{i n}(\mathbf{x})+\int d^{3} \mathbf{x}^{\prime} G\left(E_{p}+i \epsilon, \mathbf{x}, \mathbf{x}^{\prime}\right) V\left(\mathbf{x}^{\prime}\right) \Psi_{i n}\left(\mathbf{x}^{\prime}\right) .
\end{align*}
$$

To the leading order in perturbation theory, in the last line one can replace G by G_{0}, since the difference between the free and the full Green functions provides the next-order correction to $\Psi_{0}(\mathbf{x})$. Since

$$
\begin{equation*}
\Psi_{i n}(\mathbf{x}) \sim e^{i \mathbf{p} \cdot \mathbf{x}} \tag{10}
\end{equation*}
$$

the inequality $\left|\Psi_{i n}(\mathbf{0})-\Psi_{0}(\mathbf{0})\right| \ll\left|\Psi_{i n}(\mathbf{0})\right|$ is rewritten as

$$
\begin{equation*}
\left|\int d^{3} \mathbf{x}^{\prime} G_{0}\left(E_{p}-i \epsilon, \mathbf{0}, \mathbf{x}^{\prime}\right) V\left(\mathbf{x}^{\prime}\right) \Psi_{i n}\left(\mathbf{x}^{\prime}\right)\right| \ll 1 \tag{11}
\end{equation*}
$$

Recall that

$$
\begin{equation*}
G_{0}\left(E_{p}+i \epsilon, \mathbf{x}, \mathbf{x}^{\prime}\right)=\frac{m}{2 \pi} \frac{e^{i \sqrt{2 m E_{p}}\left|\mathbf{x}-\mathbf{x}^{\prime}\right|}}{\left|\mathbf{x}-\mathbf{x}^{\prime}\right|} \tag{12}
\end{equation*}
$$

Then, if $V(\mathbf{x})$ contains only radial dependence on \mathbf{x}, one can perform explicitly the integration over angular variables in eq. (11) :

$$
\begin{align*}
\left|\int d^{3} \mathbf{x}^{\prime} G_{0}\left(E_{p}-i \epsilon, \mathbf{0}, \mathbf{x}^{\prime}\right) V\left(\mathbf{x}^{\prime}\right) \Psi_{i n}\left(\mathbf{x}^{\prime}\right)\right| & =m\left|\int_{0}^{\infty} d r r^{2} d \cos \theta \frac{e^{i \sqrt{2 m E_{p}} r}}{r} V(r) e^{i p r \cos \theta}\right| \\
& =m\left|\int_{0}^{\infty} d r r e^{i \sqrt{2 m E_{p}} r} V(r) \frac{1}{i p r}\left(e^{i p r}-e^{-i p r}\right)\right| \\
& \leqslant \frac{m}{p}\left|\int_{0}^{\infty} d r V(r)\left(1-e^{2 i p r}\right)\right| \tag{13}
\end{align*}
$$

Hence, eq. (11) takes the form

$$
\begin{equation*}
\frac{m}{p}\left|\int_{0}^{\infty} d r V(r)\left(1-e^{2 i p r}\right)\right| \ll 1 \tag{14}
\end{equation*}
$$

2. Consider the square well potential

$$
V(r)= \begin{cases}-V_{0}, & r<R, \tag{15}\\ 0, & r>R .\end{cases}
$$

In the slow scattering regime, $p R \ll 1$, we can expand the exponent in eq. (14) to the first order in $p R$ to obtain

$$
\begin{equation*}
\frac{m}{p}\left|V_{0} \int_{0}^{R} d r 2 i p r\right| \sim m V_{0} R^{2} \ll 1 \tag{16}
\end{equation*}
$$

3. Since $\sigma \sim 4 \pi|f|^{2}$, and $f \sim \frac{m}{2 \pi} V_{0} \frac{4 \pi}{3} R^{3} \sim m V_{0} R^{3}$, we have by the virtue of eq. (16)

$$
\begin{equation*}
\sigma \sim 4 \pi m^{2} V_{0}^{2} R^{6}=4 \pi\left(m V_{0} R^{2}\right)^{2} \cdot R^{2} \ll 4 \pi R^{2} . \tag{17}
\end{equation*}
$$

4. In the regime of fast scattering, $p R \gg 1$, the exponent in eq. (14) is a rapidly oscillating function which gives no overall contribution to the integral. Hence, the applicability condition becomes $\frac{m}{p} V_{0} R \ll 1$, or

$$
\begin{equation*}
m V_{0} R^{2} \ll p R \tag{18}
\end{equation*}
$$

Note that this requirement is much weaker than the condition (16) for slow particles. This is consistent with expectations, since for a given potential the Born approximation is supposed to work better as the energy of the scattered particles increases.
5. Applying the condition (14) to the Yukawa potential,

$$
\begin{equation*}
V(r)=\frac{\alpha}{r} e^{-\mu r} \tag{19}
\end{equation*}
$$

we have

$$
\frac{m}{p}\left|\int_{0}^{\infty} d r \frac{\alpha}{r} e^{-\mu r} \sin p r\right|=\left|\frac{m \alpha}{p} \arctan \frac{p}{\mu}\right| \sim\left\{\left.\begin{array}{ll}
\left\lvert\, \frac{m \alpha}{\mu}\right. \tag{20}\\
\mid \ll 1, & p \ll \mu \\
p
\end{array} \right\rvert\, \ll 1, \quad p \gg \mu . ~ \$\right.
$$

