
Libraries and Mapping

Giovanni De Micheli
Integrated Systems Centre

EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

(c) Giovanni De Micheli 2

Module 1

◆Objective
▲Libraries
▲Problem formulation and analysis
▲Algorithms for library binding based on structural

methods

(c) Giovanni De Micheli 3

Library binding

◆Given an unbound logic network and a set of library cells
▲Transform into an interconnection of instances of library cells

▲Optimize delay
▼ (under area or power constraints)

▲Optimize area
▼ Under delay and/or power constraints

▲Optimize power
▼ Under delay and/or area constraints

◆Library binding is called also technology mapping
▲Redesigning circuits in different technologies

(c) Giovanni De Micheli 4

Major approaches

◆Rule-based systems
▲Generic, handle all types of cells and situations
▲Hard to obtain circuit with specific properties
▲Data base:

▼ Set of pattern pairs
▼ Local search: detect pattern, implement its best realization

◆Heuristic algorithms
▲Typically restricted to single-output combinational cells
▲Library described by cell functionality and parameters

◆Most systems use a combination of both approaches:
▲Rules are used for I/Os, high buffering requirements, …

(c) Giovanni De Micheli 5

Examples

(c) Giovanni De Micheli 6

Library binding: issues

◆Matching:
▲A cell matches a sub-network when their terminal behavior is the

same

▲Tautology problem

▲ Input-variable assignment problem

◆Covering:
▲A cover of an unbound network is a partition into sub-networks

which can be replaced by library cells.

▲Binate covering problem

(c) Giovanni De Micheli 7

Assumptions

◆Network granularity is fine
▲Decomposition into base functions:

▲2-input AND, OR, NAND, NOR

◆Trivial binding
▲Use base cells to realize decomposed network
▲There exists always a trivial binding:

▼ Base-cost solution…

(c) Giovanni De Micheli 8

Example

(c) Giovanni De Micheli 9

Example

x = b + c
y = ax
z = xd

AND2 4

Cost

OR2

Library

OA21

4

5

v2

v3

v1
b

c

d z

y

x

a

b
c

d

a

x

z

y
m1: {v1,OR2}
m2: {v2,AND2}
m3: {v3,AND2}
m4: {v1,v2,OA21}
m5: {v1,v3,OA21}

x

v3

v2

v1

(c) Giovanni De Micheli 10

Example

◆ Vertex covering:
▲ Covering v1 : (m1 + m4 + m5)

▲ Covering v2 : (m2 + m4)
▲ Covering v3 : (m3 + m5)

◆ Input compatibility:
▲ Match m2 requires m1

▼ (m�2 + m1)

▲ Match m3 requires m1

▼ (m�3 + m1)

◆ Overall binate covering clause
▲ (m1+m4+m5) (m2+m4)(m3+m5)(m�2+m1)(m�3+m1) = 1

x

v3

v2

v1

(c) Giovanni De Micheli 11

Heuristic approach to library binding

◆Split problem into various stages:
▲Decomposition

▼ Cast network and library in standard form
▼ Decompose into base functions
▼ Example, NAND2 and INV

▲Partitioning
▼ Break network into cones
▼ Reduce to many multi-input, single-output networks

▲Covering
▼ Cover each sub-network by library cells

◆Most tools use this strategy
▲Sometimes stages are merged

(c) Giovanni De Micheli 12

Decomposition

(c) Giovanni De Micheli 13

Partitioning

(c) Giovanni De Micheli 14

Covering

(c) Giovanni De Micheli 15

Heuristic algorithms

◆Structural approach
▲Model functions by patterns

▼ Example: tree, dags

▲Rely on pattern matching techniques

◆Boolean approach
▲Use Boolean models
▲Solve the tautology problem

▼ Use BDD technology

▲More powerful

(c) Giovanni De Micheli 16

Example

◆Boolean vs. structural matching

◆ f = xy + x�y� + y�z

◆ g = xy + x�y� + xz

◆Function equality is a tautology
▲ Boolean match

◆Patterns may be different
▲ Structural match may not exist

(c) Giovanni De Micheli 17

Example

(c) Giovanni De Micheli 18

Example

SUBJECT TREE PATTERN TREES

cost = 2
INV

cost = 3
NAND

cost = 4
AND

cost = 5
OR

(c) Giovanni De Micheli 19

Example: Lib

Match of s: t1
cost = 2

s

r

u

t

Match of u: t2
cost = 3

s

r

u

t

Match of t: t1
cost = 2+3 = 5

s

r

u

t

Match of t: t3
cost = 4

s

r

u

t

Match of r: t2
cost = 3+2+4 =9

s

r

u

t

Match of r: t4
cost = 5+3 =8

(c) Giovanni De Micheli 20

Tree covering

◆Dynamic programming
▲Visit subject tree bottom up

◆At each vertex
▲Attempt to match:

▼ Locally rooted subtree to all library cell
▼ Find best match and record

▲There is always a match when the base cells are in the library
◆Bottom-up search yields and optimum cover
◆Caveat:

▲Mapping into trees is a distortion for some cells
▲Overall optimality is weakened by the overall strategy of splitting

into several stages

(c) Giovanni De Micheli 21

Different covering problems

◆Covering for minimum area:
▲Each cell has a fixed area cost (label)

▲Area is additive:
▼ Add area of match to cost of sub-trees

◆Covering for minimum delay:
▲Delay is fanout independent

▼ Delay computed with (max, +) rules
▼ Add delay of match to highest cost of sub-trees

▲Delay is fanout dependent
▼ Look-ahead scheme is required

(c) Giovanni De Micheli 22

Simple library

(c) Giovanni De Micheli 23

Example – minimum area cover

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 3

y t1 INV(a) 2

t3 AND2(y,z) 6 + 4 + 2 = 12

z t2 NAND2(x,d) 3+3 = 6

w t2 NAND2(y,z) 3+6+ 2 = 11

o t1 INV(w) 2+11 = 13

t6B AOI21(x,d,a) 6 + 3 = 9

◆Area cost: INV:2 NAND2:3 AND2: 4 AOI21: 6

(c) Giovanni De Micheli 24

Example – minimum delay cover
◆ Fixed delays: INV:2 NAND2:4 AND2: 5 AOI21: 10
◆ All inputs are stable at time 0, except for td = 6

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 4

y t1 INV(a) 2

t3 AND2(y,z) 10 + 5 = 15

z t2 NAND2(x,d) 6+4 = 10

w t2 NAND2(y,z) 10 + 4 = 14

o t1 INV(w) 14 + 2 = 16

t6B AOI21(x,d,a) 10 + 6 = 16

(c) Giovanni De Micheli 25

Minimum-delay cover for load-dependent delays

◆ Model
▲ Gate delay is d = α + β cap_load
▲ Capacitive load depends on the driven cells (fanout cone)
▲ There is a finite (possibly small) set of capacitive loads

◆ Algorithm
▲ Visit subject tree bottom up
▲ Compute an array of solutions for each possible load
▲ For each input to a matching cell, the best match for the corresponding load is

selected

◆ Optimality
▲ Optimum solution when all possible loads are considered
▲ Heuristic: group loads into bins

(c) Giovanni De Micheli 26

Example – minimum delay cover
◆ Delays: INV:1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
◆ All inputs are stable at time 0, except for td = 6
◆ All loads are 1

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate Cost

x t2 NAND2(b,c) 4

y t1 INV(a) 2

t3 AND2(y,z) 10 + 5 = 15

z t2 NAND2(x,d) 6+4 = 10

w t2 NAND2(y,z) 10 + 4 = 14

o t1 INV(w) 14 + 2 = 16

t6B AOI21(x,d,a) 10 + 6 = 16

Same as before !

(c) Giovanni De Micheli 27

Example – minimum delay cover

◆ Delays: INV: 1+load NAND2: 3+load AND2: 4+load AOI21: 9+load

◆ All inputs are stable at time 0, except for td = 6

◆ All loads are 1 (for cells seen so far)

◆ Add new cell SINV with delay 1 + ½ load and load 2

◆ The sub-network drives a load of 5

(c) Giovanni De Micheli 28

Example – minimum delay cover

t3 AND2(y,z) 19

o t1 INV(w) 20

o

w

y z

a

b c

dx

N

N

N

I

I

v

vv

v

Network Subject graph Vertex Match Gate

Cost

Load=1 Load=2 Load=5

x t2 NAND2(b,c) 4 5 8

y t1 INV(a) 2 3 6

z t2 NAND2(x,d) 10 11 14

w t2 NAND2(y,z) 14 15 18

t6B AOI21(x,d,a) 20

SINV(w) 18.5

(c) Giovanni De Micheli 29

Module 2

◆Objectives
▲Boolean covering

▲Boolean matching
▲Simultaneous optimization and binding
▲Extensions to Boolean methods

(c) Giovanni De Micheli 30

Boolean covering

◆Decompose network into base functions

◆Partition network into cones

◆Apply bottom-up covering to each cone
▲ When considering vertex v:

▼ Construct clusters by local elimination
▼ Limit the depth of the cluster by limiting the

support of the function
▼ Associate several functions with vertex v
▼ Apply matching and record cost

(c) Giovanni De Micheli 31

Boolean matching
P-equivalence

◆Cluster function f(x)
▲Sub-network behavior

◆Pattern function g(y)
▲Cell behavior

◆P-equivalence
▲ Is there a permutation operator P, such that f(x) = g (P x)

is a tautology?

◆Approaches:
▲Tautology check over all input permutations
▲Multi-rooted pattern ROBDD capturing all permutations

(c) Giovanni De Micheli 32

Input/output polarity assignment

◆NPN classification of logic functions

◆NPN-equivalence
▲There exist a permutation operator P and complementation

operators Ni and No, such that f(x) = No g (P Ni x) is a tautology

◆Variations:
▲N-equivalence

▲PN-equivalence

(c) Giovanni De Micheli 33

◆Pin assignment problem:
▲Map cluster variables x to pattern variables y

▲Characteristic equation: A(x,y) = 1

◆Pattern function under variable assignment:
▲ gA (x) = Sy (A (x,y) g (y))

◆Tautology problem
▲ f(x) = gA (x)

▲"x f(x) = Sy (A (x,y) g (y))

Boolean matching

&
x1

x2

f

gy1y2

(c) Giovanni De Micheli 34

◆Cluster terminals: x -- cell terminals: y

◆Assign x1 to y�2 and x2 to y1

◆Characteristic equation
▲A (x1,x2,y1,y2) = (x1 Å y2) (x2 y1)

◆AND pattern function
▲g = y1 y2

◆Pattern function under assignment
▲Sy1y2 A g = Sy1y2 ((x1 Å y2) (x2 y1) y1 y2) = x2 x�1

Example

x1

x2

f

gy1y2

Å

Å

(c) Giovanni De Micheli 35

Signatures and filters

◆Capture some properties of Boolean functions

◆ If signatures do not match, there is no match

◆Signatures are used as filters to reduce computation

◆Signatures:
▲Unateness

▲Symmetries

▲Co-factor sizes

▲Spectra

(c) Giovanni De Micheli 36

Filters based on unateness and symmetries

◆Any pin assignment must associate:
▲Unate variables in f(x) with unate variables in g(y)

▲Binate variables in f(x) with binate variables in g(y)

◆Variables or group of variables:
▲That are interchangeable in f(x) must be interchangeable in g(y)

(c) Giovanni De Micheli 37

Example

◆ Cluster function: f = abc
▲ Symmetries { { a,b,c} }
▲ Unate

◆ Pattern functions
▲ g1 = a + b + c

▼ Symmetries { { a,b,c} }
▼ Unate

▲ g2 = ab +c
▼ Symmetries { {a,b}, {c} }
▼ Unate

▲ g3 = abc� + a�b�c
▼ Symmetries { {a,b,c} }
▼ Binate

(c) Giovanni De Micheli 38

Concurrent optimization and library binding

◆Motivation

▲Logic simplification is usually done prior to binding

▲Logic simplification and substitution can be combined
with binding

◆Mechanism
▲Binding induces some don�t care conditions

▲Exploit don�t cares as degrees of freedom in matching

(c) Giovanni De Micheli 39

Example

(c) Giovanni De Micheli 40

Boolean matching with don�t care conditions

◆Given f(x), fDC(x) and g(y)

▲g matches f, if g is equivalent to h, where:

f f�DC ≤ h ≤ f + fDC

◆Matching condition:

"x (fDC(x) + f(x) Sy (A (x,y) g(y)))Å

(c) Giovanni De Micheli 41

Example

◆Assume vx is bound to an OR3(c�,b,e)

◆Don�t care set includes x Å (c�+b+e)

◆Consider fj = x(a+c) with CDC = x�c�

◆No simplification.
▲ Mapping into AOI gate.

◆Matching with DCs.
▲ Map to a MUX gate.

(c) Giovanni De Micheli 42

Example

(c) Giovanni De Micheli 43

Extended matching

◆ Motivation:
▲ Search implicitly for best pin assignment
▲ Make a single test, determining matching and assignment

◆ Technique:
▲ Construct BDD model of cell and assignments

◆ Visual intuition:
▲ Imagine to place MUX function at cell inputs
▲ Each cell input can be routed to any cluster input (or voltage rail)
▲ Input polarity can be changed:

▼ NP-equivalence (extensible to NPN)

▲ Cell and cluster may differ in size

◆ Cell and multiplexers are described by a composite function G(x,c)
▲ Pin assignment is determining c

(c) Giovanni De Micheli 44

Example

◆g = y1 + y2 y�3

◆y1 (c,x) = (c0c1x1 + c0c�1x2 + c�0c1x3) Å c2

◆G = y1 (c,x) + y2(c,x) y3(c,x)�

◆An EXOR gate can be placed at the gate
output to support NPN-equivalence check

(c) Giovanni De Micheli 45

Extended matching modeling

◆Model composite functions with ROBDDs
▲Assume n-input cluster and m-input cell

▲For each cell input:
▼

┌ log2 n ┐ variables for pin permutation
▼ One variable for input polarity

▲Total size of c: m(┌ log2 n┐ + 1)
▲One additional variable for output polarity

◆A match exists if there is at least one value of c satisfying
M (c) = "x [G(x,c) f(x)]Å

◆Cell: g=x�y

◆Cluster: f = wz�

◆G(a,b,c,d) = (cÅ(za+wa�))�(dÅ(zb+wb�))

◆F G=(wz) (cÅ(za+wa�))�(dÅzb+wb�))

◆M(c) = ab�c�d� + a�bcd

Å Å

(c) Giovanni De Micheli 46

Example

&
z

w

f

&
0
1

0
1

z
w

a c

b d

x

y
G

(c) Giovanni De Micheli 47

Extended matching

◆Extended matching captures implicitly all possible matches

◆No extra burden when exploiting don�t care sets

◆M (c) = "x [G(x,c) f(x) + fDC(x)]

◆Efficient BDD representation

◆Extensions:
▲Support multiple-output matching

▲Full library representation

Å

(c) Giovanni De Micheli 48

Full library model

◆Represent full library with L(x,c)
▲One single (large) BDD

◆Visual intuition
▲All composite cells connected to a MUX

◆Compare cluster to library L(x,c)
▲M (c) = "x [L(x,c) f(x) + fDC(x)]

▲Vector c determines:
▼ Feasible cell matches
▼ Feasible pin assignments
▼ Feasible output polarity

G1

G2

Gn

L

Å

(c) Giovanni De Micheli 49

Summary

◆Library binding is a key step in synthesis

◆Most systems use some rules together with heuristic
algorithms that concentrate on combinational logic
▲Best results are obtained with Boolean matching

▲Sometimes structural matching is used for speed

◆Library binding is tightly linked to buffering and to
physical design

