Libraries and Mapping

Giovanni De Micheli Integrated Systems Centre EPF Lausanne

This presentation can be used for non-commercial purposes as long as this note and the copyright footers are not removed

© Giovanni De Micheli – All rights reserved

Module 1

Objective

▲ Libraries

Problem formulation and analysis

Algorithms for library binding based on structural methods

Library binding

Given an unbound logic network and a set of library cells

- ▲ Transform into an interconnection of instances of library cells
- ▲ Optimize delay
 - ▼ (under area or power constraints)
- ▲ Optimize area
 - ▼ Under delay and/or power constraints
- Optimize power
 - Under delay and/or area constraints

Library binding is called also technology mapping

▲ Redesigning circuits in different technologies

Major approaches

Rule-based systems

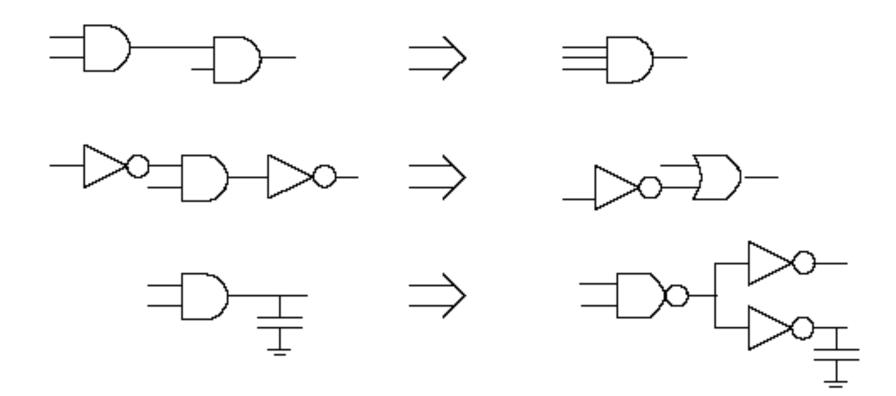
- ▲ Generic, handle all types of cells and situations
- ▲ Hard to obtain circuit with specific properties
- ▲ Data base:
 - ▼ Set of pattern pairs
 - ▼ Local search: detect pattern, implement its best realization

Heuristic algorithms

- ▲ Typically restricted to single-output combinational cells
- ▲ Library described by cell functionality and parameters

Most systems use a combination of both approaches:

▲ Rules are used for I/Os, high buffering requirements, ...



Library binding: issues

Matching:

A cell matches a sub-network when their terminal behavior is the same

- ▲ Tautology problem
- ▲ *Input-variable* assignment problem

Covering:

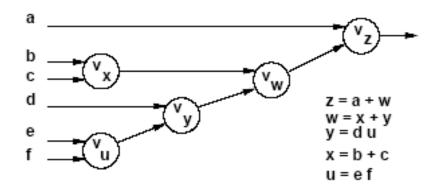
▲ A cover of an unbound network is a partition into sub-networks which can be replaced by library cells.

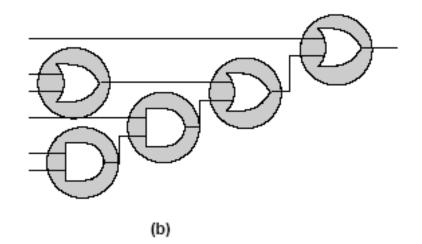
▲ Binate covering problem

Assumptions

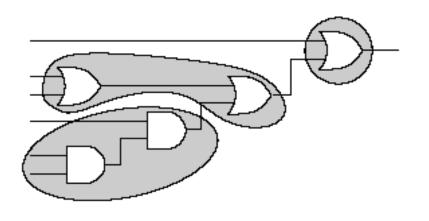
Network granularity is fine

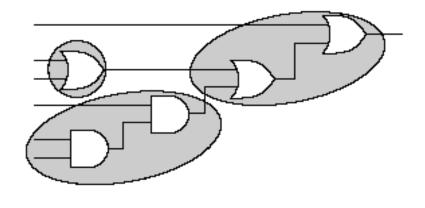
- ▲ Decomposition into base functions:
- ▲ 2-input AND, OR, NAND, NOR
- Trivial binding
 - ▲ Use base cells to realize decomposed network
 - ▲ There exists always a trivial binding:
 - ▼ Base-cost solution...





(a)

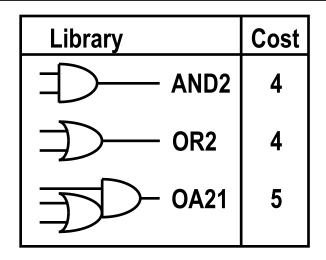




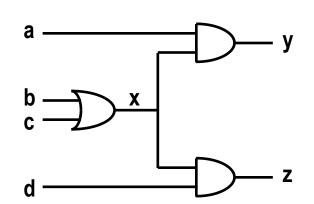
(d)

(c)

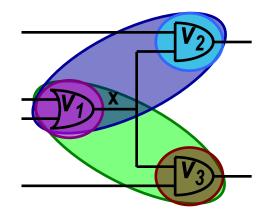
(c) Giovanni De Micheli



x = b + c y = ax z = xd a $V_2 \to y$ b $V_1 \to z$ d $V_3 \to z$



m₁: {v₁,OR2} m₂: {v₂,AND2} m₃: {v₃,AND2} m₄: {v₁,v₂,OA21} m₅: {v₁,v₃,OA21}



Vertex covering:

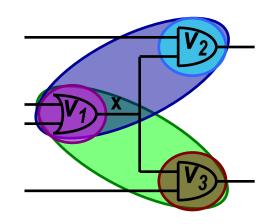
- **\land** Covering v_1 : ($m_1 + m_4 + m_5$)
- **\land** Covering v_2 : ($m_2 + m_4$)
- **\land** Covering v_3 : ($m_3 + m_5$)

Input compatibility:

- ▲ Match m₂ requires m₁
 - ▼ (m'₂ + m₁)
- ▲ Match m₃ requires m₁
 - ▼ (m'₃ + m₁)

Overall binate covering clause

 $(m_1+m_4+m_5) (m_2+m_4)(m_3+m_5)(m'_2+m_1)(m'_3+m_1) = 1$



Heuristic approach to library binding

Split problem into various stages:

Decomposition

- Cast network and library in standard form
- ▼ Decompose into base functions
- ▼ Example, NAND2 and INV

▲ Partitioning

- Break network into cones
- ▼ Reduce to many multi-input, single-output networks

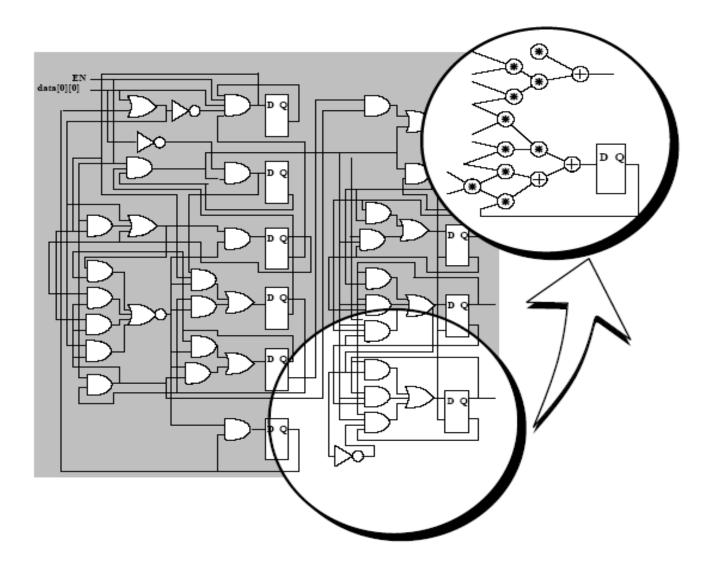
▲ Covering

▼ Cover each sub-network by library cells

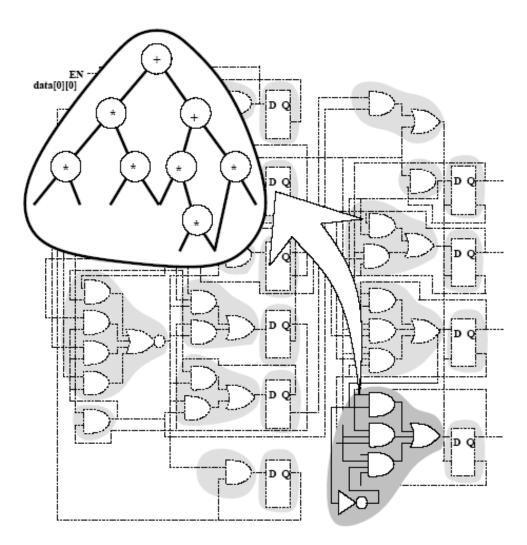
Most tools use this strategy

Sometimes stages are merged

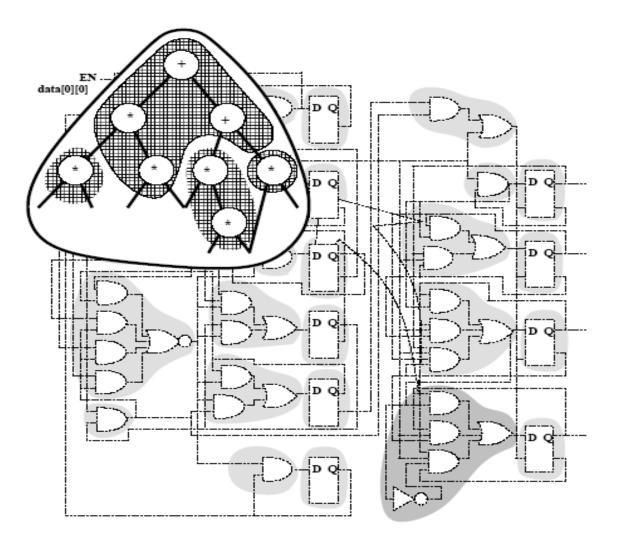
Decomposition



Partitioning



Covering



Heuristic algorithms

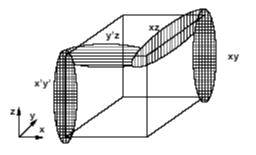
Structural approach

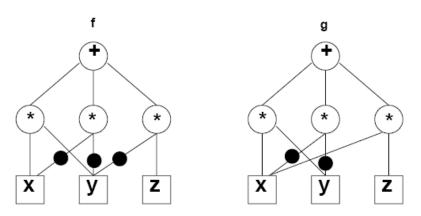
- ▲ Model functions by patterns
 - ▼ Example: tree, dags
- ▲ Rely on pattern matching techniques

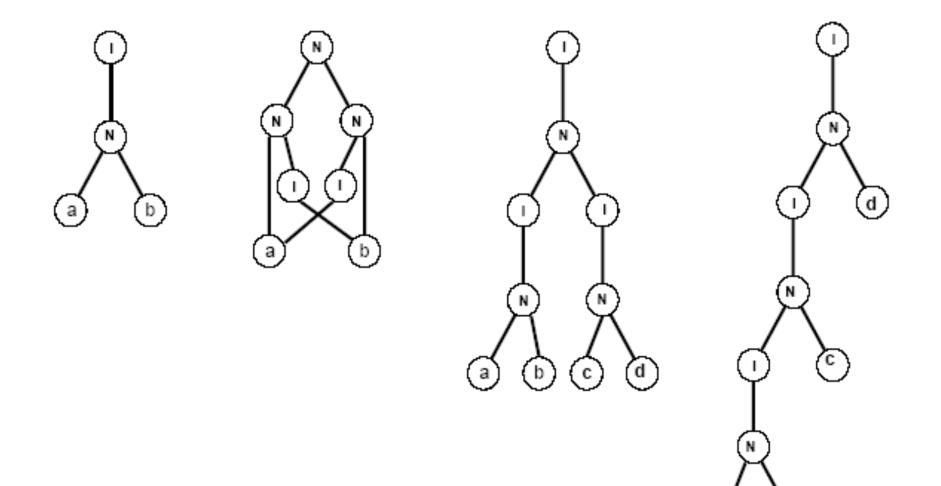
Boolean approach

- ▲ Use Boolean models
- ▲ Solve the tautology problem
 - ▼ Use BDD technology
- ▲ More powerful

- Boolean vs. structural matching
- ♦ f = xy + x' y' + y' z
- ♦ g = xy + x' y' + xz
- Function equality is a tautology
 - Boolean match
- Patterns may be different
 - ▲ Structural match may not exist

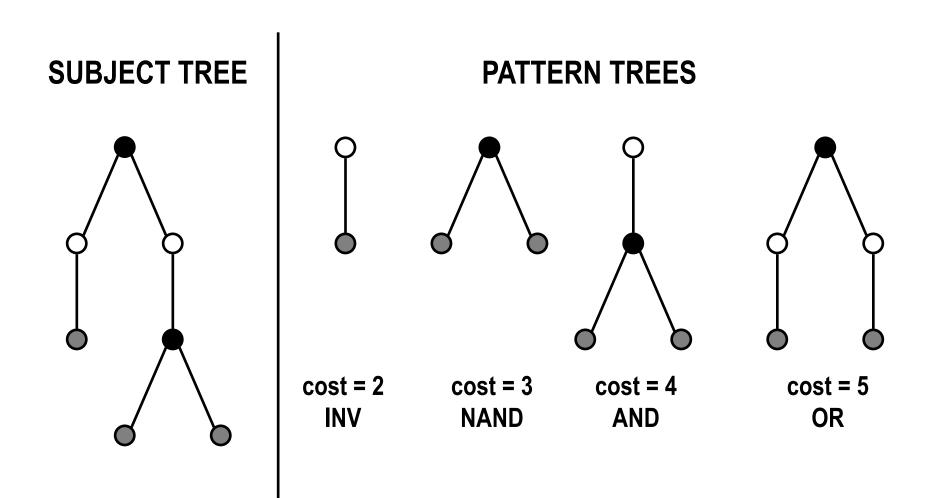






b

а



Match of s: t1 Match of t: t1 Match of r: t2 Match of t: t3 Match of r: t4 cost = 2+3 = 5 cost = 2cost = 4cost = 3+2+4 =9 cost = 5+3 =8 Match of u: t2 cost = 3S U U

Example: Lib 1 🔨

Tree covering

Dynamic programming

▲ Visit subject tree bottom up

At each vertex

- ▲ Attempt to match:
 - ▼ Locally rooted subtree to all library cell
 - ▼ Find best match and record
- ▲ There is always a match when the base cells are in the library
- Bottom-up search yields and optimum cover

Caveat:

▲ Mapping into trees is a distortion for some cells

Overall optimality is weakened by the overall strategy of splitting into several stages

Different covering problems

Covering for minimum area:

- Each cell has a fixed area cost (label)
- ▲ Area is additive:
 - ▼ Add area of match to cost of sub-trees

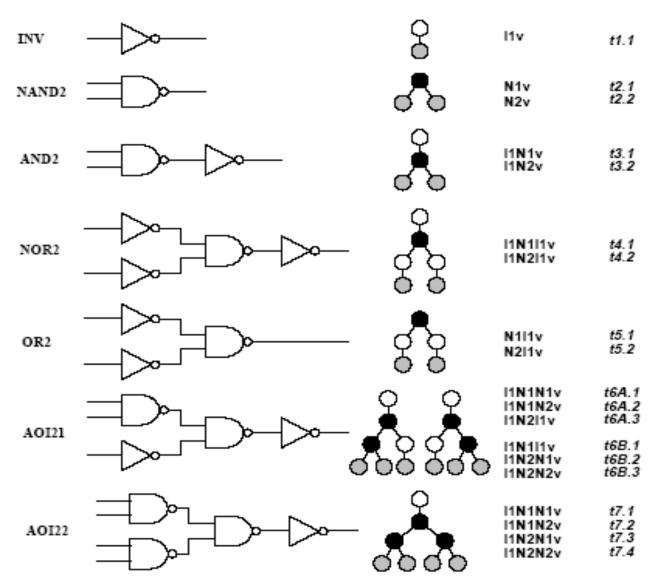
Covering for minimum delay:

- ▲ Delay is fanout independent
 - ▼ Delay computed with (max, +) rules
 - Add delay of match to highest cost of sub-trees

Delay is fanout dependent

▼ Look-ahead scheme is required

Simple library



(c) Giovanni De Micheli

Area cost: INV:2 NAND2:3 AND2: 4 AOI21: 6						
Network	Subject graph	Vertex	Match	Gate	Cost	
•		x	t2	NAND2(b,c)	3	
	O I	у	t1	INV(a)	2	
		z	t2	NAND2(x,d)	3+3 = 6	
	P	w	t2	NAND2(y,z)	3+6+ 2 = 11	
y 🚽 🖕 z		о	t1	INV(w)	2+11 = 13	
$ \downarrow \downarrow \downarrow \rangle$			t3	AND2(y,z)	6 + 4 + 2 = 12	
a xod	vo 🙍 ov		t6B	AOI21(x,d,a)	6 + 3 = 9	
b ^{ll} c	v ov					

Fixed delays: INV:2 NAND2:4 AND2: 5 AOI21: 10
 All inputs are stable at time 0, except for t_d = 6

Network	Subject graph	Vertex	Match	Gate	Cost
•		x	t2	NAND2(b,c)	4
Å	O I	у	t1	INV(a)	2
	Ť	z	t2	NAND2(x,d)	6+4 = 10
	P	w	t2	NAND2(y,z)	10 + 4 = 14
y J L z		ο	t1	INV(w)	14 + 2 = 16
$ \bigtriangleup \bigcirc$			t3	AND2(y,z)	10 + 5 = 15
a xold	ve 📡 ev		t6B	AOI21(x,d,a)	10 + 6 = 16
b ^{ll} c	v o o _v				

Minimum-delay cover for load-dependent delays

Model

- **\triangle** Gate delay is d = α + β cap_load
- ▲ Capacitive load depends on the driven cells (fanout cone)
- ▲ There is a finite (possibly small) set of capacitive loads

Algorithm

- ▲ Visit subject tree bottom up
- Compute an array of solutions for each possible load
- For each input to a matching cell, the best match for the corresponding load is selected

Optimality

- ▲ Optimum solution when all possible loads are considered
- ▲ Heuristic: group loads into bins

Delays: INV:1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
All inputs are stable at time 0, except for t_d = 6

All loads are 1

Same as before !

Network	Subject graph	Vertex	Match	Gate	Cost
o		x	t2	NAND2(b,c)	4
w w y, , , z		у	t1	INV(a)	2
		z	t2	NAND2(x,d)	6+4 = 10
		w	t2	NAND2(y,z)	10 + 4 = 14
		0	t1	INV(w)	14 + 2 = 16
			t3	AND2(y,z)	10 + 5 = 15
a xod			t6B	AOI21(x,d,a)	10 + 6 = 16
b ^l c	v o o _v				

(c) Giovanni De Micheli

- Delays: INV: 1+load NAND2: 3+load AND2: 4+load AOI21: 9+load
- All inputs are stable at time 0, except for t_d = 6
- All loads are 1 (for cells seen so far)
- Add new cell SINV with delay $1 + \frac{1}{2}$ load and load 2
- The sub-network drives a load of 5

					Cost		
Network	Subject graph	Vertex	Match	Gate	Load=1	Load=2	Load=5
•		x	t2	NAND2(b,c)	4	5	8
Å	<mark>0</mark> I	у	t1	INV(a)	2	3	6
		z	t2	NAND2(x,d)	10	11	14
	N	w	t2	NAND2(y,z)	14—	+ 15	18
y 🏓 🖣 z		о	t1	INV(w)			20
$ \bigtriangleup \bigcirc $			t3	AND2(y,z)			19
a x	ve 📡 ev		t6B	AOI21(x,d,a)			20
				SINV(w)			18.5
b ^{ll} c	vÓÒv						

Module 2

Objectives

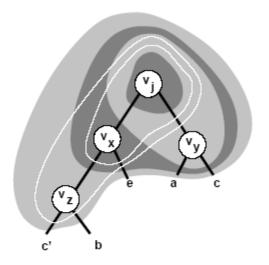
- ▲ Boolean covering
- ▲ Boolean matching
- ▲ Simultaneous optimization and binding
- ▲ Extensions to Boolean methods

Boolean covering

- Decompose network into base functions
- Partition network into cones

Apply bottom-up covering to each cone

- ▲ When considering vertex v:
 - ▼ Construct clusters by local elimination
 - Limit the depth of the cluster by limiting the support of the function
 - ▼ Associate several functions with vertex v
 - Apply matching and record cost



$$f_{j,1} = xy;$$

$$f_{j,2} = x(a+c);$$

$$f_{j,3} = (e+z)y;$$

$$f_{j,4} = (e+z)(a+c);$$

$$f_{j,5} = (e+c'+d)y;$$

$$f_{j,6} = (e+c'+d)(a+c);$$

Cluster function f(x)

- Sub-network behavior
- Pattern function g(y)
 - ▲ Cell behavior

♦ P-equivalence

▲ Is there a permutation operator *P*, such that f(x) = g (*P* x) is a tautology?

Approaches:

Tautology check over all input permutations

▲ Multi-rooted pattern ROBDD capturing all permutations

Input/output polarity assignment

NPN classification of logic functions

♦ NPN-equivalence

▲ There exist a permutation operator *P* and complementation operators *N_i* and *N_o*, such that f(x) = *N_o* g (*P N_i* x) is a tautology

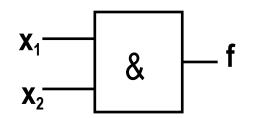
Variations:

- ▲ *N*-equivalence
- ▲ PN-equivalence

Boolean matching

Pin assignment problem:

- ▲ Map cluster variables x to pattern variables y
- ▲ Characteristic equation: A(x,y) = 1



y₁⁻ **y**₂⁻

Pattern function under variable assignment: g_A (x) = S_y (A (x,y) g (y))

Tautology problem

 $\mathbf{A} \mathbf{f}(\mathbf{x}) = \mathbf{g}_{A} (\mathbf{x})$

$$\blacktriangle \forall_x f(x) = S_y (A(x,y)g(y))$$

g

- Cluster terminals: x -- cell terminals: y
- Assign x_1 to y'_2 and x_2 to y_1
- Characteristic equation

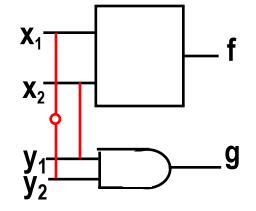
 $\blacktriangle A (\mathbf{x}_1, \mathbf{x}_2, \mathbf{y}_1, \mathbf{y}_2) = (\mathbf{x}_1 \oplus \mathbf{y}_2) (\mathbf{x}_2 \overline{\oplus} \mathbf{y}_1)$

AND pattern function

 $\mathbf{A}\mathbf{g} = \mathbf{y}_1 \, \mathbf{y}_2$

Pattern function under assignment

 $S_{y_1y_2} A g = S_{y_1y_2} ((x_1 \oplus y_2) (x_2 \oplus y_1) y_1 y_2) = x_2 x'_1$



- Capture some properties of Boolean functions
- If signatures do not match, there is no match
- Signatures are used as filters to reduce computation
- Signatures:
 - ▲ Unateness
 - ▲ Symmetries
 - ▲ Co-factor sizes
 - ▲ Spectra

Filters based on unateness and symmetries

Any pin assignment must associate:

- \blacktriangle Unate variables in f(x) with unate variables in g(y)
- ▲ Binate variables in f(x) with binate variables in g(y)

Variables or group of variables:

▲ That are interchangeable in f(x) must be interchangeable in g(y)

- Cluster function: f = abc
 - Symmetries { { a,b,c} }
 - Unate
- Pattern functions
 - ▲ g₁ = a + b + c
 - Symmetries { { a,b,c} }
 - ▼ Unate
 - ▲ g₂ = ab +c
 - ▼ Symmetries { {a,b}, {c} }
 - ▼ Unate
 - \blacktriangle g₃ = abc' + a' b' c
 - Symmetries { {a,b,c} }
 - ▼ Binate

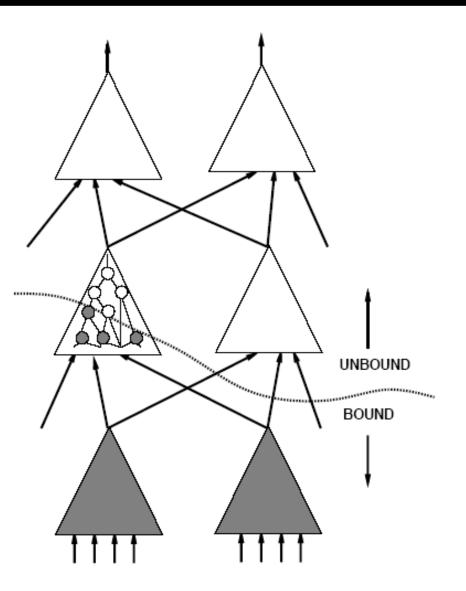
Concurrent optimization and library binding

Motivation

 Logic simplification is usually done prior to binding
 Logic simplification and substitution can be combined with binding

Mechanism

▲Binding induces some *don't care* conditions ▲Exploit *don't cares* as degrees of freedom in matching



Boolean matching with don't care conditions

Given f(x), f_{DC}(x) and g(y)

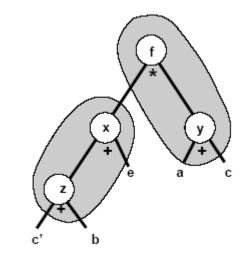
▲g matches f, if g is equivalent to h, where:

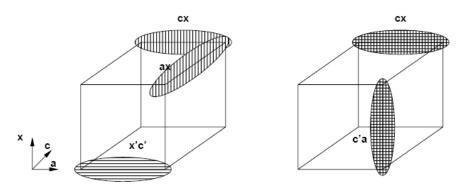
$f f'_{DC} \leq h \leq f + f_{DC}$

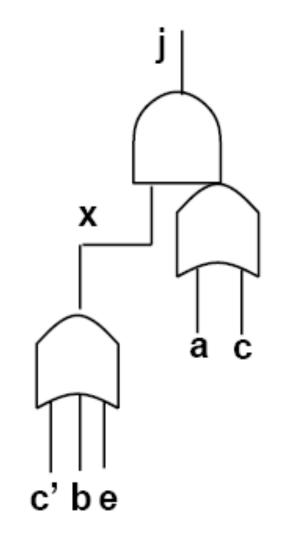
Matching condition:

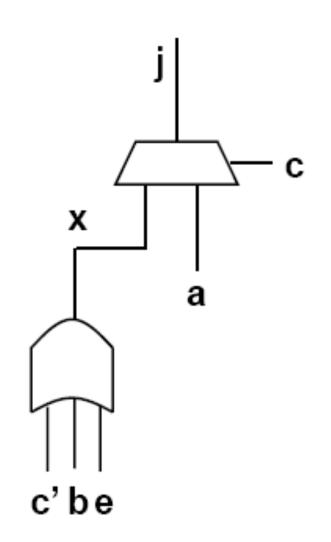
 $\forall_x (f_{DC}(x) + f(x) \oplus S_y (A(x,y) g(y)))$

- Assume v_x is bound to an OR3(c',b,e)
- ◆Don't care set includes x ⊕ (c' +b+e)
- ◆Consider f_j = x(a+c) with CDC = x' c'
- No simplification.
 - ▲ Mapping into AOI gate.
- Matching with DCs.
 - ▲ Map to a MUX gate.









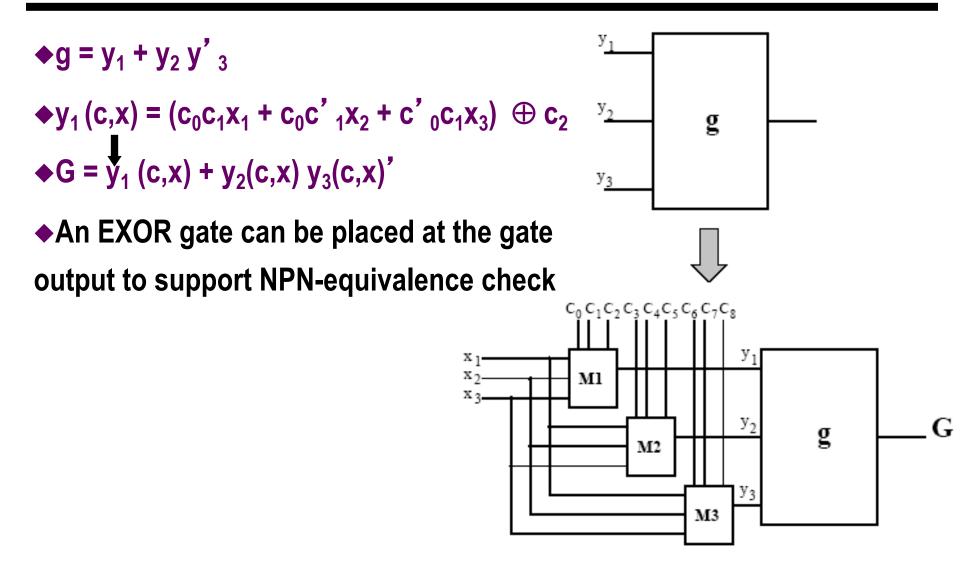
Extended matching

Motivation:

- ▲ Search implicitly for best pin assignment
- Make a single test, determining matching and assignment
- Technique:
 - Construct BDD model of cell and assignments
- Visual intuition:
 - ▲ Imagine to place MUX function at cell inputs
 - Each cell input can be routed to any cluster input (or voltage rail)
 - Input polarity can be changed:
 - ▼ NP-equivalence (extensible to NPN)
 - ▲ Cell and cluster may differ in size

Cell and multiplexers are described by a composite function G(x,c)

▲ Pin assignment is determining c



Extended matching modeling

Model composite functions with ROBDDs

- ▲ Assume n-input cluster and m-input cell
- ▲ For each cell input:
 - $\mathbf{v} \ \lceil \log_2 n \rceil$ variables for pin permutation
 - One variable for input polarity
- ▲ Total size of c: $m(\lceil \log_2 n \rceil + 1)$
- One additional variable for output polarity
- ♦ A match exists if there is at least one value of c satisfying
 M (c) = $\forall_x [G(x,c) \oplus f(x)]$

◆Cell: g=x' y & Cluster: f = wz' W a С ◆ $G(a,b,c,d) = (c \oplus (za+wa'))' (d \oplus (zb+wb'))$ Ζ Х $F ⊕ G=(wz) ⊕ (c⊕(za+wa'))' (d⊕zb+wb'))^{w}$ & $\mathbf{A}M(c) = ab'c'd' + a'bcd$

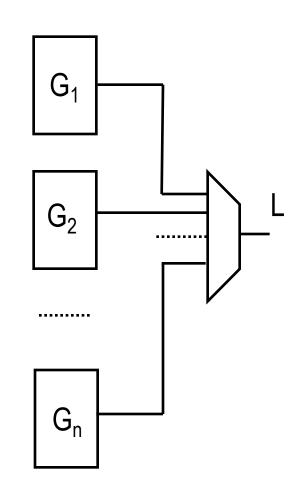
b

d

G

- Extended matching captures implicitly all possible matches
- No extra burden when exploiting don't care sets
- ♦ M (c) = \forall_x [G(x,c) \oplus f(x) + f_{DC}(x)]
- Efficient BDD representation
- Extensions:
 - Support multiple-output matching
 - ▲ Full library representation

- Represent full library with L(x,c)
 - ▲ One single (large) BDD
- Visual intuition
 - ▲ All composite cells connected to a MUX
- Compare cluster to library L(x,c)
 - $\mathbf{A} \mathbf{M} (\mathbf{c}) = \forall_{\mathbf{x}} [\mathbf{L}(\mathbf{x}, \mathbf{c}) \oplus \mathbf{f}(\mathbf{x}) + \mathbf{f}_{\mathsf{DC}}(\mathbf{x})]$
 - ▲ Vector c determines:
 - ▼ Feasible cell matches
 - ▼ Feasible pin assignments
 - Feasible output polarity



Library binding is a key step in synthesis

- Most systems use some rules together with heuristic algorithms that concentrate on combinational logic
 - Best results are obtained with Boolean matching
 - ▲ Sometimes structural matching is used for speed
- Library binding is tightly linked to buffering and to physical design