
QUANTUM PHYSICS III
Solutions to Problem Set 13 18 décembre 2018

1. General solution of the Dirac equation

1. Substituting the Ansatz
ΨD = e

i
~ (p·x−ωPt)uP (1)

into the Dirac equation,

−
~

i
∂ΨD

∂t
= HDΨD , HD =

3∑
i=1

αi pi + βm (2)

with

αi =

(
0 σi

σi 0

)
, β =

(
I 0
0 −I

)
, (3)

we arrive at
(αi pi + βm)uP = ωPuP . (4)

2. Eq. (4) is a homogeneous system of four linear equations which is written in the
matrix form as follows,

Aup = 0 , A =

(
m − ωP piσi

piσi −m − ωP

)
. (5)

A nontrivial solution of this system exists if and only if the determinant of A va-
nishes, that is,

det A = (m2 + p2
1 + p2

2 + p2
3 − ω

2
P)2 = 0 , (6)

from where it follows that
ωP = ±

√
m2 + p2 . (7)

This is nothing but the relation between the momentum and the energy the on-shell
particle must obey.

3. In the notation uP = (φP χP)T the system (5) is written as

piσi φP = (ωP + m)χP ,

piσi χP = (ωP − m)φP .
(8)

From this, the general solution of the Dirac equation is read off straightforwardly.
It is

uP = (φP , (piσi)−1(ωP − m)φP)T (9)

with φP an arbitrary two-dimensional vector.

4. In the non-relativistic limit ωP ≈ m, hence χP ≈ 0, and the general solution (9)
becomes

uP = (φP, 0)T . (10)
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2. Properties of the Dirac matrices

1. The transformation
α′i = UαiU−1 , β′ = UβU−1 , (11)

with U a unitary matrix, does not spoil any properties of the Dirac matrices αi and β.
To prove this, note first that their commutation relations remain unchanged, since,
for example,

α′iα
′
j + α′jα

′
i = U(αiU−1Uα j + α jU−1Uαi)U−1 = 2UU−1δi j = 2δi j . (12)

Next,
α′†i = (UαiU−1)† = (U−1)†α†i U† = Uα†i U−1 = α′i , (13)

and similarly β′† = β′. Hence, hermiticity is also preserved. Finally,

Tr α′i = Tr (UαiU−1) = Tr (αiU−1U) = Tr αi = 0 , (14)

and similarly Tr β′ = 0.
2. To obtain the Weyl representation, one can choose the transformation matrix as

U =
1
√

2

(
−I I
−I −I

)
. (15)

Then,

α′i =

(
−σi 0

0 σi

)
, β′ =

(
0 I
I 0

)
. (16)

3. Taking the massless limit m = 0 in the Weyl representation of the Dirac equation,
we have

−
~

i
∂ΨD

∂t
= HDΨD , HD = α′i pi =

(
−σi pi 0

0 σi pi

)
. (17)

Upon substituting ΨD = (φ, χ)T , the equation above is spitted into two independent
equations :

(i~∂t + σi pi)φ = 0 ,
(i~∂t − σi pi)χ = 0 .

(18)

These are the Weyl equations for massless particle. Hence, the advantage of using
the Weyl representation of the Dirac matrices is that it allows to disentangle the
components of the Dirac spinor ΨD in the massless limit.
Multiplying the first equation of the system (18) by i~∂t − σi pi and the second —
by i~∂t + σi pi, we obtain

(−~2∂2
t − p2)φ = (−~2∂2

t − p2)χ = 0 . (19)

These are nothing but the Klein-Gordon equation on the Fourier components of ΨD.
For the particle propagating along the x-line, py = pz = 0, and eqs. (18) become

(i~∂t + σ1 px)φ = 0 ,
(i~∂t − σ1 px)χ = 0 .

(20)

The general solution of this system is

φ = c1e
i
~ pxt

(
1
1

)
+ c2e−

i
~ pxt

(
1
−1

)
, χ = d1e

i
~ pxt

(
1
−1

)
+ d2e−

i
~ pxt

(
1
1

)
. (21)
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4. In looking for a new representation of the Dirac matrices, we would like to keep
their form as block-diagonals of the Pauli matrices. Then, the requirements of β′2 =

1 and Tr β = 0 constrain the choice of β′ to

β′ =

(
0 σ2

σ2 0

)
, β′ =

(
σ2 0
0 −σ2

)
. (22)

Let

U =

(
u1 u2

u3 u4

)
(23)

be the transformation matrix with u1, ... u4 some appropriate 2 × 2 matrices. Then,
it is easy to see that the equation

β′ = UβU−1 , β =

(
I 0
0 −I

)
(24)

rules out the second possibility in (22) as it requires ui = ±σ2ui for all i. The first
possibility is acceptable and it demands

u3 = σ2u1 , u4 = −σ2u2 . (25)

Therefore, the matrix U can be rewritten in the form

U =
1
√

2

(
u1 u2

σ2u1 −σ2u2

)
. (26)

We put the overall coefficient to ensure that U becomes unitary when u1 and u2 are
both unitary.
Now we have to choose u1 and u2 such that

Im (UαiU†) = 0 , i = 1, 2, 3 . (27)

This is achieved, for example, by taking

u1 = iσ2 , u2 = I . (28)

With this choice, the matrices α′i become

α′1 =

(
σ3 0
0 σ3

)
, α′2 = −i

(
0 σ2

−σ2 0

)
, α′3 =

(
σ1 0
0 σ1

)
. (29)

This representation of the Dirac matrices is named after Majorana. It is used in
description of a certain type of neutral particles, e.g., Majorana neutrinos.

3. One useful relation

From the commutation relations of the Pauli matrices,

[σi, σ j] = 2iεi jkσk ,{
σi, σ j

}
= 2δi jI ,

(30)
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where I is a unit 2 × 2 matrix, we have

[σi, σ j] +
{
σi, σ j

}
= 2(iεi jkσk + δi jI) = 2σiσ j , (31)

hence
σiσ j = iεi jkσk + δi jI . (32)

Contracting this with the vector ~π, we obtain

(~σ · ~π)(~σ · ~π) = ~π2I + i~σ(~π × ~π) . (33)

To compute the last product, we write the vector ~π in components,

(~π × ~π)i = εi jk

(
−i~∂ j −

e
c

A j

) (
−i~∂k −

e
c

Ak

)
= i
~e
c
εi jk((∂ jAk) + Ak∂ j + A j∂k)

= i
~e
c

(rot ~A)i = i
~e
c

Bi .

(34)

Substituting this into eq. (33) gives

(~σ · ~π)(~σ · ~π) = ~π2I −
~e
c
~σ · ~B . (35)

4. On Landau levels

1. The potentials ~A and Φ are related to the magnetic and electric fields as follows,

~B = rot ~A , ~E = −~∇Φ . (36)

Taking

~A = −


yB
0
0

 , Φ = 0 , (37)

we have in components

Bi = εi jk∂ jAk = −εzyxBδzi = εxyzBδzi = Bδzi , Ei = 0 . (38)

Because of the antisymmetry of εi jk, this result remains unchanged if we shift the
vector potential ~A by

~A→ ~A + ~∇α(~x) , (39)

where α is an arbitrary function of ~x. For example, choosing α = xyB, we obtain an
equivalent configuration

~A′ =


0
xB
0

 , Φ′ = 0 . (40)

It is clear also that both ~A and Φ can be shifted by an arbitrary constant.

4



2. We plug the expression for the Dirac spinor,

Ψ = e−
i
~Et

(
φ

χ

)
, (41)

into the equation

i
∂Ψ

∂t
=

(
~α · ~π + βm + eΦ

)
Ψ . (42)

The result is

(E − m − eΦ)φ = ~σ · ~π χ ,

(E + m − eΦ)χ = ~σ · ~π φ .
(43)

Expressing χ through φ in the second equation of (43) and substituting it to the first
equation, we arrive at

(E2 − m2)φ = (~σ · ~π)2φ . (44)

Let us rewrite the r.h.s. of this equation by the means of eqs. (35) and (37),

(~σ · ~π)2 = ~π2 − e~σ · ~B

= −~∇2 + ey2B2 − 2ieyB∂x − eBσ3 .
(45)

Hence, eq. (44) becomes

(E2 − m2)φ = (−~∇2 + ey2B2 − 2ieyB∂x − eBσ3)φ . (46)

3. Noticing that the coordinates y and z do not appear in eq. (46) except through the
derivatives, one can write the solution as

φ = ei(px x+pzz) f (y) . (47)

There will be two independent solutions for f (y) which can be taken, without loss
of generality, to be the eigenstates of σ3 with eigenvalues ±1. This means that we
choose the two independent functions in the form

f+(y) =

(
F+(y)

0

)
, f−(y) =

(
0

F−(y)

)
. (48)

Since σ3 f±(y) = ± f±(y), the differential equations satisfied by F± are

d2F±
dy2 + (E2 − m2 − p2

z ± eB)F± − (px + eyB)2F± = 0 . (49)

4. The change of variable

ξ =
√

eB
(
y +

px

eB

)
(50)

brings eqs. (49) to the form(
d2

dξ2 − ξ
2 + α±

)
F±(ξ) = 0 , (51)
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where

α± =
E2 − m2 − p2

z ± eB
eB

. (52)

This is a special form of Hermite’s equation, and the solutions exist provided that
α± = 2n + 1 for n = 0, 1, 2, ... This provides the energy eigenvalues

E2
N = m2 + p2

z + 2NeB . (53)

This is the relativistic form of Landau energy levels. They are two fold degenerate
in general : choosing n = N − 1 for the “+” sign yields the same energy level as
choosing n = N for the “−” sign. Also, because n is non-negative, the ground level
N = 0 is not degenerate.
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