
QUANTUM PHYSICS III
Solutions to Problem Set 14 21 December 2018

1. Relativistic description of fermions

cf. section 14.3.

2. Non-relativistic limit of the Dirac equation

In this exercise we use the following notations :
[·, ·] denotes the vector product,
[·, ·]− denotes the commutator,
{·, ·}+ denotes the anticommutator.

1. The Dirac equation

HΨ = EΨ , H = c~α~p + βmc2 + V , E = E + mc2 , V = V(r) , (1)

is rewritten in terms of the two-component spinors φ and χ as follows,

(E − V) φ = c~σ~p χ ,

(2mc2 + E − V) χ = c~σ~p φ .
(2)

Using the second equation of this system, one can express χ through φ :

χ =
1

2mc2

1
1 + E−V

2mc2

c~σ~p φ

≈

(
1 −

E − V
2mc2

)
~σ~p
2mc

φ + O(c−5) .
(3)

Plugging this into the first equation of (2), we have, to the accuracy c−2,

(E − V) φ =
~σ~p
2m

(
1 −

E − V
2mc2

)
~σ~p φ . (4)

2. Let us rewrite eq. (4) in the form

Eφ +
p2

2m
E

2mc2φ = Vφ +
p2

2m
φ

+
1

2m
1

2mc2 (~σ~p)V(~σ~p)φ ≡ H̃φ .
(5)

The operator H̃ is clearly Hermitian. The l.h.s. of the equation above is quite com-
plicated as it contains the nontrivial differential operator p2. To simplify the treat-
ment, it is convenient to make the change of variable :

ξ =

√
1 +

p2

2m
1

2mc2 φ ≡ Aφ . (6)
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Then φ = A−1ξ and
AEξ = H̃A−1ξ , (7)

or
Eξ = A−1H̃A−1ξ ≡ Heffξ . (8)

The operator Heff is again Hermitian, and it can be thought of as an effective Hamil-
tonian of the quantum system whose state is represented by the spinor ξ. Eq. (8) is
nothing but the stationary Schrodinger equation for this system.

3. First, we expand A−1 to the same accuracy as in eq. (4),

A−1 = 1 −
1
2

p2

2m
1

2mc2 + O(c−4) . (9)

Then, Heff becomes

Heff =

(
1 −

1
2

p2

2m
1

2mc2

) [
p2

2m
+ V

+
1

2m
1

2mc2 (~σ~p)V(~σ~p)
] (

1 −
1
2

p2

2m
1

2mc2

)
.

(10)

Extracting the term which does not depend on c, we obtain the leading-order equa-
tion on ξ, (

p2

2m
+ V

)
ξ = Eξ . (11)

As expected, this is the standard non-relativistic Schrodinger equation.

4. Now let us compute the leading relativistic corrections to eq. (11). The quadratic in
c−1 term in Heff reads

H(2) =
1

2m
1

2mc2 (~σ~p)V(~σ~p) −
1
2

1
2mc2

{
p2

2m
,

p2

2m
+ V

}
+

. (12)

To bring this expression to the tractable form, we make use of the following operator
identity,

(~σ~a)(~σ~b) = (~a~b) + i~σ
[
~a , ~b

]
, (13)

valid for some vectorial operators ~a and ~b. The product (~σ~p)V(~σ~p) can therefore be
transformed as

(~σ~p)V(~σ~p) =
[
~σ~p,V

]
− ~σ~p + V(~σ~p)(~σ~p)

= −i~
(
~σ(~∇V)

)
~σ~p + V p2

= −i~(~∇V)~p + ~~σ
[
~∇V, ~p

]
+ V p2 ,

(14)

where in going to the second line we used the fact that

[~p, f (x)]− = −i~~∇ f (x) . (15)

Now, we can write H(2) in the form

H(2) = V1 + V2 + V3 , (16)
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where

V1 = −
1

2mc2

(p2)2

4m2 , (17)

V2 =
~~σ

4m2c2

[
~∇V, ~p

]
, (18)

and

V3 =
1

2m
1

2mc2 (−i~~∇V~p) +
1

2m
1

2mc2 V p2 −
1
2

1
2m

1
2mc2 (p2V + V p2)

=
1

2m
1

2mc2 (−i~~∇V~p) −
1
2

1
2m

1
2mc2 [p2,V]− .

(19)

Finally,

[p2,V]− = pi piV − V pi pi = pi piV − piV pi + piV pi − V pi pi

= pi[pi,V]− + [pi,V]−pi = pi(−i~)∇iV + (−i~∇iV)pi ,
(20)

and the two terms in eq. (19) are combined into

V3 =
1

2m
1

2mc2 (−i~~∇V~p) −
1
2

1
2m

1
2mc2 (pi∇iV + ∇iV pi)(−i~)

− (−i~)
1

2m
1

2mc2

1
2

[pi,∇iV]−

= i~
1

2m
1

2mc2

1
2

(−i~)∇2V

=
~2

8m2c2 ∆V .

(21)

5. Clearly, the first term (17) in Heff represents the correction to the relativistic energy
of the particle. To clarify the meaning of the other two, let us rewrite them for the
particular case of an electron moving in the central field of a nucleus of charge Z.
The potential of the problem is

V(r) = −
Ze2

r
. (22)

Therefore,
~∇V =

Ze2

r2

~x
r

=
∂V
∂r

~x
r
, (23)

and
∆V = 4πδ(~x) · Ze2 . (24)

Hence, the term V3 becomes

V3 =
~2Ze2π

2m2c2 δ(~x) . (25)

Because of the presence of delta-function, it is called the contact (or Darwin) term.
Next,

V2 =
~~σ

4m2c2

Ze2

r3 [~x, ~p] . (26)
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Here we recognize the orbital momentum operator and the spin operator :

~L = [~x, ~p] , ~s = ~
~σ

2
. (27)

So,

V2 =
1

2m2c2

Ze2

r3 ~s
~L . (28)

Thus, V2 represents the relativistic correction due to the spin-orbital interaction.

3. Zitterbewegung

1. The Heisenberg equation
i~

...x j = [ẍ j,HD] (29)

can be converted into the valid differential equation on the functions ẋ j(t) provided
that we know how the latter commute with the Dirac Hamiltonian HD. To find this,
we write

i~ẍ j = [ẋ j,HD] (30)

and
i~ẋ j = [x j,HD] . (31)

The last commutator is calculable straightforwardly : if

HD = cαi pi + βmc2 , (32)

then eq. (31) gives
i~ẋ j = cαi[x j, pi] = i~cα j . (33)

Next, we plug this result into eq. (30) and obtain

i~ẍ j = c[α j,HD] = mc3[α j, β] = 2mc3α jβ . (34)

In obtaining the third equality, we kept only the leading term in c. We also used
the Dirac representation of the Dirac matrices to compute the commutator [α j, β].
Finally,

i~
...x j =

1
i~

2m2c5[α jβ, β] =
1
i~

4m2c5α j . (35)

In the r.h.s. of this equation we recognize the expression for ẋ j,

i~
...x j =

1
i~

4m2c4 ẋ j . (36)

Therefore, the differential equation on ẋ j(t) reads as follows,

...x j(t) +
4m2c4

~2 ẋ j = 0 . (37)

Its general solution is

ẋ j(t) = a sin
2mc2t
~

+ b cos
2mc2t
~

. (38)
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Integrating this, we obtain

x j(t) = −
~

2mc2 a cos
2mc2t
~

+
~

2mc2 b sin
2mc2t
~

+ d . (39)

Here a, b and d are arbitrary operators.

2. Eqs. (33) and (34) are nothing but the relations the functions x j(t) must satisfy
at t = 0, where the Schrodinger and the Heisenberg representations of operators
coincide. Differentiating eq. (39) and comparing, we deduce

x j(t) = x j(0) +
~

2mc

(
α j sin

2mc2t
~

+ iα jβ cos
2mc2t
~

)
. (40)

3. Eq. (40) describes a rapidly oscillating trajectory, with the period ~/2mc2 = 6 ·
10−22 s. The rapid motion of a “fermion at rest” is the Zitterbewegung, a peculiarity
in the relativistic quantum mechanical motion of spin 1/2 particle.

4. Because of this rapid motion of the Dirac particle, the net electric field the particle
experiences is averaged over its “blur”, and hence is somewhat different from the
electric field at the position itself. The averaging of the electric field gives rise to
the correction

〈V〉 =
1
2
〈(δxi)(δx j)〉

∂2V
∂xi∂x j , (41)

where δxi = xi(t) − xi(0). The isotropy tells us that

〈(δxi)(δx j)〉 =
1
3
δi j〈(δxi)2〉 = δi j ~

2

4m2c2 . (42)

Then, the correction to the potential energy is

〈V〉 =
1
2
~2

4m2c2 ∆V , (43)

and we have reproduced the Darwin term (21).
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