## PLACE AND TIME: Room DIA004, Mondays 11:15-13:00 and 14:15-16:00

**INSTRUCTOR:** Ali H. Sayed, Email: <u>ali.sayed@epfl.ch</u> **TEACHING ASSISTANT**: Stefan Vlaski, E-mail: <u>stefan.vlaski@epfl.ch</u>

**COURSE MATERIAL**: Lecture notes authored and distributed by the instructor for exclusive use by students enrolled in the class.

**PRE-REQUISITES**: It is recommended that students have some familiarity with matrix theory, linear algebra, and probability. Supplemental material on these topics is provided by the instructor as needed.

**GRADING**: 4 homework assignments including some computer projects (40%) and two take-home exam assignments worth 30% each.

## EXAMS:

- Take-home exam I (out on April 1, 2019 after class; return on April 8, 2019 before class).
- Take-home exam II (out on May 27, 2019 after class; return on May 30, 2019 before 4PM).

**TOPICS**: In this course, students learn to master tools, algorithms, and core concepts related to inference from data, data analysis, and adaptation and learning theories. *Emphasis is on the theoretical underpinnings and statistical limits of learning theory*. In particular, the course covers topics related to optimal inference, regularization, proximal techniques, online and batch methods, stochastic learning, generalization and



statistical learning theory, Bayes and naive classifiers, nearest-neighbor rules, clustering, self-organizing maps, decision trees, logistic regression, discriminant analysis, Perceptron, support vector machines, kernel methods, bagging, boosting, random forests, cross-validation, and principal component analysis.

| LECTURE | TASK        | DATE    | TENTATIVE TOPIC(S)                                                      |
|---------|-------------|---------|-------------------------------------------------------------------------|
| 1       |             | Feb. 18 | Vector Differentiation. Convex Functions. Proximal Operator.            |
| 2       |             | Feb. 25 | Deterministic and Stochastic Optimization.                              |
| 3       | HW1 due     | Mar. 4  | Motivation (Inference, Classification, Clustering). Maximum Likelihood. |
| 4       |             | Mar. 11 | Expectation-Maximization. Mixture Models.                               |
| 5       |             | Mar. 18 | Mean-Square-Error Inference. Linear Regression. Least-Squares.          |
| 6       | HW2 due     | Mar. 25 | Regularization. LASSO. Basis Pursuit.                                   |
| 7       | Exam I out  | Apr. 1  | Bayesian Inference. Discriminant Analysis.                              |
| 8       | Exam I due  | Apr. 8  | Logistic Regression. Cross Validation. Perceptron.                      |
| 9       |             | Apr. 15 | Support Vector Machines. Naïve Bayes. Nearest-Neighbor Rule.            |
|         | HOLIDAY     | Apr. 22 | EASTER HOLIDAY (NO CLASS)                                               |
| 10      | HW 3 due    | Apr. 29 | k-means Clustering. Decision Trees.                                     |
| 11      |             | May 6   | Generalization Theory. Kernel-Based Learning. PCA                       |
| 12      |             | May 13  | Neural Networks.                                                        |
| 13      | HW4 due     | May 20  | Deep Networks.                                                          |
| 14      | Exam II out | May 27  | Convolutional Networks.                                                 |
|         | Exam II due | May 30  | Before 4 PM.                                                            |