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Overall Goal of CS323 and CS323a

• CS323: 

– Learn principles of operating systems

• CS323a:

NOT GIVEN THIS SEMESTER

– See principles applied in one example, Linux



Method

• CS323:

– Lectures / exercises



Slides

• Available before class on Moodle



Recommended Book for CS323

A free online book: http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/


Prerequisites for CS323

• CS 206 – Concurrence

• CS 207 – Programmation orientée système



Work for CS323

• Weekly class meetings

• Weekly exercise sessions

• Midterm and final (2 hours, in class)



Tentative Class Schedule for CS323
Week Date Lecture Date Exercises

1 Feb 20 Intro Feb 22 Intro

2 Feb 27 Process Mar 1 Process

3 Mar 6 Process Mar 8 Process

4 Mar 13 Process Mar 15 Process

5 Mar 20 Memory Mar 22 Memory

6 Mar 27 Memory Mar 29 Memory

7 Apr 3 Memory Apr 5 Memory

8 Apr 10 File System Apr 12 Midterm Q/A

9 Apr 17 Midterm Apr 19 Midterm review

Apr 24 Apr 26

10 May 1 File System May 3 File system

11 May 8 File System May 10 File System

12 May 15 File System May 17 File System

13 May 22 Virtualization May 24 Final Q/A

14 May 29 Final May 31



Grading for CS323

• 50% on midterm

• 50% on final



Questions?



Overview of Today’s Lecture

• What does the OS do?

• Where does the OS live?

• OS interfaces

• OS control flow

• OS structure



What does an OS do?



A Bit of History

• Early days 

– Users program raw machine 

• First “abstraction”

– Libraries for scientific functions (sin, cos, …)

– Libraries for doing I/O

• I/O libraries are the first pieces of an OS



What does the OS do?

• Abstraction: makes hardware easier to use
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A Simple Example

• Write a photoshop application

• Easier to deal with files containing photos

• Than to deal with data locations on disk

• OS provides file abstraction

• Finds data locations on disk given file name



Another Simple Example

• Write a web server

• Easier to deal with sending/receiving packets

• Than with NIC device registers

• OS provides packet abstraction

• Does the NIC device register manipulation



A Bit More History

• At some point, multiprogramming

• More than one program runs at the same time



Multiprogramming

Program 1
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Memory



Multiprogramming

• Need to protect programs from each other

• Need to protect OS from programs

• Need to allocate/free memory



What does the OS do?

• Resource management: allocates hardware 
resources between programs
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A Simple Example

• Many users want to compute

• OS allocates CPU to different users



Another Simple Example

• Many users want to use memory

• OS allocates memory between users



A Final Example

• Many files need to be stored on disk

• OS allocates disk space to files



What does the OS do?

• Abstraction: makes hardware easier to use

• Resource management: allocates hardware 
resources between programs

• OS does both at the same time



What Is and What Is Not in the OS

• Web browser: only abstraction

– Not considered part of the OS

• Graphics library: only abstraction

– Not considered part of the OS

• Device driver: both

– Part of the OS

• Printer server: both

– Part of the OS



Where does the OS live?



A Bit of Computer Architecture:
CPU: Dual-Mode Operation

• Kernel mode vs. user mode

• Mode bit provided by hardware



Kernel Mode

• Privileged instructions:

– Set mode bit

– …

• Direct access to all of memory

• Direct access to devices



User Mode

• No privileged instructions:

– Set mode bit

– …

• No direct access to all of memory

• No direct access to devices



In General

• OS runs in kernel mode

• Applications run in user mode

• This allows OS

– To protect itself

– To manage applications/devices



User/OS Separation
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From Kernel to User Mode

• By the OS setting the mode bit to user

• Usually as a by-product of an instruction



From User to Kernel Mode

• By a device generating an interrupt

• By a program executing a trap or system call



System Calls:
Across User/Kernel Boundary
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System Calls

• Are the only interface from program to OS

• Narrow interface essential for integrity of OS



Example System Calls

• Process management

• Memory management

• File systems

• Device management

• …



System Calls in Linux?

System call number System call name

0 restart_syscall

1 exit

2 fork

3 read

4 write

5 open

6 close

7 waitpid

8 creat

9 link

10 unlink

…



System Calls in Linux?

System call number System call name

…

350 name_to_handle_at

351 open_by_handle_at

352 clock_adjtime

353 syncfs

354 sendmmsg

355 setns

356 process_vm_readv

357 process_vm_writev



System Call Implementation

• Architecture-specific, example for x86

• Traditionally, software interrupt instruction 

– “int 0x80”

– Raises interrupt 128

• More recently, special instructions

– “sysenter” (on Intel)

– “syscall” (on AMD)



System Call Identification

• Unique system call number

System call number System call name

0 restart_syscall

1 exit

2 fork

3 read

4 write

5 open

6 close

…



To Perform a Given System Call

• Architecture-specific, example for x86

• Put system call number in register %eax

• Execute system call instruction



System Call Parameter Passing

• Again, architecture-specific

• Put in designated registers

• Put on the stack

• Put in table and have register point to it



In Linux/x86

• System call number in %eax register

• Parameters in registers

• If more parameters, register used as pointer



Question

• Ever called the OS?
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Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

– I doubt it

• How so?



Answer: Kernel API

• A set of function calls that wrap system calls

• Easier to use

• More portable

• Example: Linux Kernel API



Kernel API
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Linux Kernel API

• Process management
– fork(), exec(), wait(), …

• Memory management
– mmap(), munmap(), sbrk(), …

• File system
– open(), close(), read(), write(), …

• Device management
– ioctl(), read(), write(), …

• Other examples
– getpid(), alarm(), sleep(), chmod(), …



What Do Wrapper Functions Do?

• At the time of the call

– Put arguments in registers

– Put system call number in register %eax

– Execute system call instruction

• At the time of the return

– Take return value out of register

– Return



Kernel API

main() {
…
write(…)
…

}

write(…) {
…
execute system call instruction
…

}
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Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

– I doubt it

• Have you ever had to invoke the kernel API?

– Maybe, maybe not



Answer: The Language Library 

• A language-specific library

• Wraps the kernel API

• Classic example: the standard C library libc



libc

• printf, sprintf, fprintf, …

• getchar, putchar, …



libc
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libc
#include <stdio.h>
main() {

…
printf(…)
…

}

printf(…) {
…
write(…)
…

}

write(…) {
…
execute system call instruction
…

}



Please Note!

• libc makes system call look like function call

• It is not a function call

• It is a user – kernel transition

– From one program (user) to another (kernel)

– Much more expensive



Traps

• Trap is generated by CPU as a result of error
– Divide by zero

– Execute privileged instruction in user mode

– Illegal access to memory

– …

• Works like an “involuntary” system call
– Sets mode to kernel mode

– Transfers control to kernel

• Identified by a trap number



Interrupts

• Generated by a device that needs attention

– Packet arrived from the network

– Disk i/o completed

– …

• Identified by an interrupt number

– Roughly speaking, identifies the device



OS Control Flow



OS Control Flow:
Event-Driven Program

• Nothing to do Do nothing



OS Control Flow:
Event-Driven Program

• Nothing to do

• Interrupt (from device)

• Trap (from process)

• System call (from process}

Do nothing

Start running



What does the hardware do
on a system call i?

• Puts the machine in kernel mode

• Sets the PC = SystemCallVector[i]

• SystemCallVector is a predefined location



What does the hardware do
on trap i?

• Puts the machine in kernel mode

• Sets the PC = TrapVector[i]

• TrapVector is a predefined location



What does the hardware do
on interrupt i?

• Puts the machine in kernel mode

• Sets the PC = InterruptVector[i]

• InterruptVector is a predefined location



Kernel Code: Initialization

SystemCallVector[1] = address of syscall 1 handler 
routine
SystemCallVector[2] = address of syscall 2 handler 
routine
….

TrapVector[1] = address of trap 1 handler routine
TrapVector[2] = address of trap 2 handler routine
…

InterruptVector[1] = address of interrupt 1 handler 
routine
InterruptVector[2] = address of interrupt 2 handler 
routine
…



Kernel Code: Main Loop

forever {
wait for something to happen (HALT instruction)
}



(Simplified) Execution Flow

• User executes system call i
• Hardware

– Puts machine in kernel mode
– Sets PC to SystemCallVector[i]

• Kernel 
– Executes system call i handler routine
– Executes a return from kernel instruction

• Hardware
– Puts machine in user mode

• User executes instruction after system call



OS Design Goals

• Correct abstractions

• Performance

• Portability

– Architecture-dependent

– Architecture-independent

• Reliability

• Other considerations:

– E.g., on mobiles, energy conservation



A Short Note About Reliability

• OS must never fail

• Must carefully check inbound parameters

• For instance, inbound address parameter must 
be valid



(Simplified) Execution Flow

• User executes system call i
• Hardware

– Puts machine in kernel mode
– Sets PC to SystemCallVector[i]

• Kernel 
– Executes system call i hander routine
– Executes a return from kernel instruction

• Hardware
– Puts machine in user mode

• User executes instruction after system call

includes check on
inbound parameters



OS Structure



User/OS Separation

user

kernel

user1 user2 user3

OS

This approach is called the “monolithic OS”



It looks more like this
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Downside of Monolithic OS

• The OS is a huge piece of software

– Millions of lines of code and growing

• Something goes wrong in kernel mode

– Most likely, machine will halt or crash

• Incentive to move stuff out of kernel mode



• Some pieces can be in user mode

– No need for privileged access

– No need for speed

• Example: daemons

– System log

– Printer daemon

– Etc.

No need for entire OS in kernel mode



User/OS Separation: Systems Programs

user

kernel

user1 user2 user3

kernel

daemon1 daemon2 daemon3 daemon4



The Ultimate Minimum: Microkernel

• Absolute minimum in kernel mode

– Interprocess communication primitives

• All the rest in user mode



Microkernel

user

kernel
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process 
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memory 
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In Practice

• Microkernels have failed commercially

– Except for niches like embedded computing

• The “systems programs” model has won out



The Price: Lines of Code in Linux Kernel



Summary

• What does the OS do?

• Where does the OS live?

• OS interfaces

• OS control flow

• OS structure



Summary: What does the OS do?

• Abstraction

• Resource management



Summary: OS Structure

• In user mode:

– Applications

– Systems programs

• In kernel mode:

– Kernel



Summary: OS Structure

user
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Summary: Where does the OS live?

• OS in (hardware) kernel mode

• Programs in (hardware) user mode



Summary: OS APIs

• System call

• Kernel API

• Language library



Summary: OS API
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Summary: OS Control Flow

• Event-driven

• Idle loop

• Broken by system call, trap or interrupt


