
Week 1
Introduction

Pamela Delgado

February 20, 2019

(slides Willy Zwaenepoel)

Staff

• Instructor: Pamela Delgado

• TAs:

– Laurent Bindschaedler

– Jasmina Malicevic

– Kristina Spirovska

– Marios Kogias

– Lucie Perrotta

• Secretary: Cecilia Bigler

Overall Goal of CS323 and CS323a

• CS323:

– Learn principles of operating systems

• CS323a:

NOT GIVEN THIS SEMESTER

– See principles applied in one example, Linux

Method

• CS323:

– Lectures / exercises

Slides

• Available before class on Moodle

Recommended Book for CS323

A free online book: http://pages.cs.wisc.edu/~remzi/OSTEP/

http://pages.cs.wisc.edu/~remzi/OSTEP/

Prerequisites for CS323

• CS 206 – Concurrence

• CS 207 – Programmation orientée système

Work for CS323

• Weekly class meetings

• Weekly exercise sessions

• Midterm and final (2 hours, in class)

Tentative Class Schedule for CS323
Week Date Lecture Date Exercises

1 Feb 20 Intro Feb 22 Intro

2 Feb 27 Process Mar 1 Process

3 Mar 6 Process Mar 8 Process

4 Mar 13 Process Mar 15 Process

5 Mar 20 Memory Mar 22 Memory

6 Mar 27 Memory Mar 29 Memory

7 Apr 3 Memory Apr 5 Memory

8 Apr 10 File System Apr 12 Midterm Q/A

9 Apr 17 Midterm Apr 19 Midterm review

Apr 24 Apr 26

10 May 1 File System May 3 File system

11 May 8 File System May 10 File System

12 May 15 File System May 17 File System

13 May 22 Virtualization May 24 Final Q/A

14 May 29 Final May 31

Grading for CS323

• 50% on midterm

• 50% on final

Questions?

Overview of Today’s Lecture

• What does the OS do?

• Where does the OS live?

• OS interfaces

• OS control flow

• OS structure

What does an OS do?

A Bit of History

• Early days

– Users program raw machine

• First “abstraction”

– Libraries for scientific functions (sin, cos, …)

– Libraries for doing I/O

• I/O libraries are the first pieces of an OS

What does the OS do?

• Abstraction: makes hardware easier to use

What does the OS do?

• Abstraction: makes hardware easier to use

CPU

Memory

Disk(s)

Device(s)

Hardware

What does the OS do?

• Abstraction: makes hardware easier to use

CPU

Memory

Disk(s)

Device(s)

Process

Address space

File

Virtual device

Hardware Abstraction

What does the OS do?

• Abstraction: makes hardware easier to use

CPU

Memory

Disk(s)

Device(s)

Process

Address space

File

Virtual device

Process management

Memory management

File systems

Device management

Hardware Abstraction OS component

A Simple Example

• Write a photoshop application

• Easier to deal with files containing photos

• Than to deal with data locations on disk

• OS provides file abstraction

• Finds data locations on disk given file name

Another Simple Example

• Write a web server

• Easier to deal with sending/receiving packets

• Than with NIC device registers

• OS provides packet abstraction

• Does the NIC device register manipulation

A Bit More History

• At some point, multiprogramming

• More than one program runs at the same time

Multiprogramming

Program 1

Program 3

Program 2

Memory

Multiprogramming

• Need to protect programs from each other

• Need to protect OS from programs

• Need to allocate/free memory

What does the OS do?

• Resource management: allocates hardware
resources between programs

What does the OS do?

• Resource management: allocates hardware
resources between programs

CPU

Memory

Disk(s)

Device(s)

Hardware

What does the OS do?

• Resource management: allocates hardware
resources between programs

CPU

Memory

Disk(s)

Device(s)

Process

Address spaces

Files

Virtual devices

Hardware Resource management

Process

Address space

File

Virtual device

…

What does the OS do?

• Resource management: allocates hardware
resources between programs

CPU

Memory

Disk(s)

Device(s)

Process

Address spaces

Files

Virtual devices

Process management

Memory management

File systems

Device management

Hardware Resource management OS component

Process

Address space

File

Virtual device

…

A Simple Example

• Many users want to compute

• OS allocates CPU to different users

Another Simple Example

• Many users want to use memory

• OS allocates memory between users

A Final Example

• Many files need to be stored on disk

• OS allocates disk space to files

What does the OS do?

• Abstraction: makes hardware easier to use

• Resource management: allocates hardware
resources between programs

• OS does both at the same time

What Is and What Is Not in the OS

• Web browser: only abstraction

– Not considered part of the OS

• Graphics library: only abstraction

– Not considered part of the OS

• Device driver: both

– Part of the OS

• Printer server: both

– Part of the OS

Where does the OS live?

A Bit of Computer Architecture:
CPU: Dual-Mode Operation

• Kernel mode vs. user mode

• Mode bit provided by hardware

Kernel Mode

• Privileged instructions:

– Set mode bit

– …

• Direct access to all of memory

• Direct access to devices

User Mode

• No privileged instructions:

– Set mode bit

– …

• No direct access to all of memory

• No direct access to devices

In General

• OS runs in kernel mode

• Applications run in user mode

• This allows OS

– To protect itself

– To manage applications/devices

User/OS Separation

user

kernel

user1 user2 user3

OS

From Kernel to User Mode

• By the OS setting the mode bit to user

• Usually as a by-product of an instruction

From User to Kernel Mode

• By a device generating an interrupt

• By a program executing a trap or system call

System Calls:
Across User/Kernel Boundary

user

kernel

user1 user2 user3

system call interface

OS

System Calls

• Are the only interface from program to OS

• Narrow interface essential for integrity of OS

Example System Calls

• Process management

• Memory management

• File systems

• Device management

• …

System Calls in Linux?

System call number System call name

0 restart_syscall

1 exit

2 fork

3 read

4 write

5 open

6 close

7 waitpid

8 creat

9 link

10 unlink

…

System Calls in Linux?

System call number System call name

…

350 name_to_handle_at

351 open_by_handle_at

352 clock_adjtime

353 syncfs

354 sendmmsg

355 setns

356 process_vm_readv

357 process_vm_writev

System Call Implementation

• Architecture-specific, example for x86

• Traditionally, software interrupt instruction

– “int 0x80”

– Raises interrupt 128

• More recently, special instructions

– “sysenter” (on Intel)

– “syscall” (on AMD)

System Call Identification

• Unique system call number

System call number System call name

0 restart_syscall

1 exit

2 fork

3 read

4 write

5 open

6 close

…

To Perform a Given System Call

• Architecture-specific, example for x86

• Put system call number in register %eax

• Execute system call instruction

System Call Parameter Passing

• Again, architecture-specific

• Put in designated registers

• Put on the stack

• Put in table and have register point to it

In Linux/x86

• System call number in %eax register

• Parameters in registers

• If more parameters, register used as pointer

Question

• Ever called the OS?

Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

– I doubt it

• How so?

Answer: Kernel API

• A set of function calls that wrap system calls

• Easier to use

• More portable

• Example: Linux Kernel API

Kernel API

user

kernel
system call interface

OS

User
program

Kernel API
Library

Linux Kernel API

• Process management
– fork(), exec(), wait(), …

• Memory management
– mmap(), munmap(), sbrk(), …

• File system
– open(), close(), read(), write(), …

• Device management
– ioctl(), read(), write(), …

• Other examples
– getpid(), alarm(), sleep(), chmod(), …

What Do Wrapper Functions Do?

• At the time of the call

– Put arguments in registers

– Put system call number in register %eax

– Execute system call instruction

• At the time of the return

– Take return value out of register

– Return

Kernel API

main() {
…
write(…)
…

}

write(…) {
…
execute system call instruction
…

}

Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

– I doubt it

• Have you ever had to invoke the kernel API?

Question

• Ever called the OS?

– Yes, of course, e.g., any file system operation.

• Ever written a system call instruction?

– I doubt it

• Have you ever had to invoke the kernel API?

– Maybe, maybe not

Answer: The Language Library

• A language-specific library

• Wraps the kernel API

• Classic example: the standard C library libc

libc

• printf, sprintf, fprintf, …

• getchar, putchar, …

libc

libc

user

kernel

system call interface

OS

User C
program

Kernel API
Library

libc
#include <stdio.h>
main() {

…
printf(…)
…

}

printf(…) {
…
write(…)
…

}

write(…) {
…
execute system call instruction
…

}

Please Note!

• libc makes system call look like function call

• It is not a function call

• It is a user – kernel transition

– From one program (user) to another (kernel)

– Much more expensive

Traps

• Trap is generated by CPU as a result of error
– Divide by zero

– Execute privileged instruction in user mode

– Illegal access to memory

– …

• Works like an “involuntary” system call
– Sets mode to kernel mode

– Transfers control to kernel

• Identified by a trap number

Interrupts

• Generated by a device that needs attention

– Packet arrived from the network

– Disk i/o completed

– …

• Identified by an interrupt number

– Roughly speaking, identifies the device

OS Control Flow

OS Control Flow:
Event-Driven Program

• Nothing to do Do nothing

OS Control Flow:
Event-Driven Program

• Nothing to do

• Interrupt (from device)

• Trap (from process)

• System call (from process}

Do nothing

Start running

What does the hardware do
on a system call i?

• Puts the machine in kernel mode

• Sets the PC = SystemCallVector[i]

• SystemCallVector is a predefined location

What does the hardware do
on trap i?

• Puts the machine in kernel mode

• Sets the PC = TrapVector[i]

• TrapVector is a predefined location

What does the hardware do
on interrupt i?

• Puts the machine in kernel mode

• Sets the PC = InterruptVector[i]

• InterruptVector is a predefined location

Kernel Code: Initialization

SystemCallVector[1] = address of syscall 1 handler
routine
SystemCallVector[2] = address of syscall 2 handler
routine
….

TrapVector[1] = address of trap 1 handler routine
TrapVector[2] = address of trap 2 handler routine
…

InterruptVector[1] = address of interrupt 1 handler
routine
InterruptVector[2] = address of interrupt 2 handler
routine
…

Kernel Code: Main Loop

forever {
wait for something to happen (HALT instruction)
}

(Simplified) Execution Flow

• User executes system call i
• Hardware

– Puts machine in kernel mode
– Sets PC to SystemCallVector[i]

• Kernel
– Executes system call i handler routine
– Executes a return from kernel instruction

• Hardware
– Puts machine in user mode

• User executes instruction after system call

OS Design Goals

• Correct abstractions

• Performance

• Portability

– Architecture-dependent

– Architecture-independent

• Reliability

• Other considerations:

– E.g., on mobiles, energy conservation

A Short Note About Reliability

• OS must never fail

• Must carefully check inbound parameters

• For instance, inbound address parameter must
be valid

(Simplified) Execution Flow

• User executes system call i
• Hardware

– Puts machine in kernel mode
– Sets PC to SystemCallVector[i]

• Kernel
– Executes system call i hander routine
– Executes a return from kernel instruction

• Hardware
– Puts machine in user mode

• User executes instruction after system call

includes check on
inbound parameters

OS Structure

User/OS Separation

user

kernel

user1 user2 user3

OS

This approach is called the “monolithic OS”

It looks more like this

user

kernel

user1 user2 user3

OS

Downside of Monolithic OS

• The OS is a huge piece of software

– Millions of lines of code and growing

• Something goes wrong in kernel mode

– Most likely, machine will halt or crash

• Incentive to move stuff out of kernel mode

• Some pieces can be in user mode

– No need for privileged access

– No need for speed

• Example: daemons

– System log

– Printer daemon

– Etc.

No need for entire OS in kernel mode

User/OS Separation: Systems Programs

user

kernel

user1 user2 user3

kernel

daemon1 daemon2 daemon3 daemon4

The Ultimate Minimum: Microkernel

• Absolute minimum in kernel mode

– Interprocess communication primitives

• All the rest in user mode

Microkernel

user

kernel

user1 user2 user3

daemon1 daemon2 daemon3 daemon4

process
magt.

memory
magt.

file
system

micro-
kernel

In Practice

• Microkernels have failed commercially

– Except for niches like embedded computing

• The “systems programs” model has won out

The Price: Lines of Code in Linux Kernel

Summary

• What does the OS do?

• Where does the OS live?

• OS interfaces

• OS control flow

• OS structure

Summary: What does the OS do?

• Abstraction

• Resource management

Summary: OS Structure

• In user mode:

– Applications

– Systems programs

• In kernel mode:

– Kernel

Summary: OS Structure

user

kernel

user1 user2 user3

Kernel

daemon1 daemon2 daemon3 daemon4

Summary: Where does the OS live?

• OS in (hardware) kernel mode

• Programs in (hardware) user mode

Summary: OS APIs

• System call

• Kernel API

• Language library

Summary: OS API

libc

user

kernel

system call interface

OS

User C
program

Kernel API
Library

Summary: OS Control Flow

• Event-driven

• Idle loop

• Broken by system call, trap or interrupt

