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1. Introduction

Question 1.1. What kinds of quantities and operations appear in relation to analysis (or

multivariable calculus) in a bounded open set U ⊂ Rn?

Some possible answers:

• Functions: continuity, partial derivatives, integrals, Lp spaces, Taylor expansions,

Fourier or related expansions

• Vector fields: gradient, curl, divergence

• Measures, distributions, flows

• Laplace operator, Laplace, heat and wave equations

• Integration by parts formulas (Gauss, divergence, Green)

• Tensor fields, differential forms

• Distance, distance-minimizing curves (line segments), area, volume, perimeter

Imagine similar concepts on a hypersurface (e.g. double torus in R3)

This course is an introduction to analysis on manifolds. The first part of the course

title has the following Wikipedia description: “Mathematical Analysis is a branch of

mathematics that includes the theories of differentiation, integration, measure, limits,

infinite series, and analytic functions. These theories are usually studied in the context of

real and complex numbers and functions. Analysis evolved from calculus, which involves

the elementary concepts and techniques of analysis. Analysis may be distinguished from

geometry; however, it can be applied to any space of mathematical objects that has a

definition of nearness (a topological space) or specific distances between objects (a metric

space).”
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Following this description, our purpose will be to study in particular differentiation,

integration, and differential equations on spaces that are more general than the standard

Euclidean space Rn. Different classes of spaces allow for different kinds of analysis:

• Topological spaces are a good setting for studying continuous functions and limits,

but in general they do not have enough structure to allow studying derivatives

• The smaller class of metric spaces admits certain notions of differentiability, but

in particular higher order derivatives are not always well defined

• Differentiable manifolds are modeled after pieces of Euclidean space and allow

differentiation and integration, but they do not have a canonical Laplace operator

and thus the theory of differential equations is limited

The class of spaces studied in this course will be that of Riemannian manifolds. These

are differentiable manifolds with an extra bit of structure, a Riemannian metric, that

allows to measure lengths and angles of tangent vectors. Adding this extra structure

leads to a very rich theory where many different parts of mathematics come together. We

mention a few related aspects, and some of these will be covered during this course (the

more advanced topics that will be covered will be chosen according to the interests of the

audience):

(1) Calculus. Riemannian manifolds are differentiable manifolds, hence the usual no-

tions of multivariable calculus on differentiable manifolds apply (derivatives, vector

and tensor fields, integration of differential forms)

(2) Metric geometry. Riemannian manifolds are metric spaces: there is a natural

distance function on any Riemannian manifold such that the corresponding metric

space topology coincides with the usual topology. Distances are realized by certain

distinguished curves called geodesics, and these can be studied via a second order

ODE (the geodesic equation).

(3) Measure theory. Any oriented Riemannian manifold has a canonical measure given

by the volume form. The presence of this measure allows to integrate functions

and to define Lp spaces on Riemannian manifolds.

(4) Differential equations. There is a canonical Laplace operator on any Riemannian

manifold, and all the classical linear partial differential equations (Laplace, heat,

wave) have natural counterparts

(5) Dynamical systems. The geodesic flow on a closed Riemannian manifold is a

Hamiltonian flow on the cotangent bundle, and the geometry of the manifold is

reflected in properties of the flow (such as complete integrability or ergodicity)

(6) Conformal geometry. The notions of conformal and quasiconformal mappings

make sense on Riemannian manifolds, and there is enough underlying structure to

provide many tools for studying them

(7) Topology. There are several ways of describing topological properties of the un-

derlying manifold in terms of analysis. In particular, Hodge theory characterizes

the cohomology of the space via the Laplace operator acting on differential forms,

and Morse theory describes the topological type of the space via critical points of

a smooth function on it
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(8) Curvature. The notion of curvature is fundamental in mathematics, and Riemann-

ian manifolds are perhaps the most natural setting for studying curvature. Related

concepts include the Riemann tensor, the Ricci tensor, and scalar curvature. There

has been recent interest in lower bounds for Ricci curvature and their applications

(9) Inverse problems. Many interesting inverse problems have natural formulations

on Riemannian manifolds, such as integral geometry problems where one tries to

determine a function from its integrals over geodesics, or spectral rigidity problems

where one tries to determine properties of the underlying space from knowledge of

eigenvalues of the Laplacian.

(10) Geometric analysis. There are many branches of mathematics that are called

geometric analysis. One particular topic is that of geometric evolution equations,

where geometric quantities evolve according to a certain PDE. One of the most

famous such equations is Ricci flow, where a Riemannian metric is deformed via its

Ricci tensor. This was recently used by Perelman to complete Hamilton’s program

for proving the Poincaré and geometrization conjectures.

2. Calculus in Euclidean spaces

Let U be any nonempty open subset of Rn (not necessarily bounded, and could be

equal to Rn). We fix standard Cartesian coordinates x = (x1, · · · , xn) and will use these

coordinates throughout this chapter. We may sometimes write xj instead of xj, and we

will also denote by vj or vj the j-th coordinate of a vector v ∈ Rn.

2.1. Functions and Taylor expansions. Let C(U) be the set of continuous functions

on U . For partial derivatives, we will write

∂jf =
∂f

∂xj
and ∂j1···jkf =

∂kf

∂xj1 · · · ∂xjk
.

We denote by Ck(U) the set of k times continuously differentiable real valued functions

on U . Thus

Ck(U) =
{
f : U → R : ∂j1···jkf ∈ C(U) whenever l ≤ k and j1, · · · , jl ∈ {1, · · · , n}

}
.

Recall also that if f ∈ Ck(U), then ∂j1···jkf = ∂jσ(1)···jσ(k) for any permutation σ of

{1, · · · , k}.
We also denote by C∞(U) the infinitely differentiable functions on U , that is,

C∞(U) =
⋂
k≥0

Ck(U).

Theorem 2.1 (Taylor expansion). Let f ∈ Ck(U), let x0 ∈ U , and assume thatB(x0, r) ⊂
U . If x ∈ B(x0, r), then

f(x) =
k∑
l=0

1

l!

[ ∑
j1,··· ,jl

∂j1···jlf(x0)(x− x0)j1 · · · (x− x0)jl
]

+Rk(x;x0),

where |Rk(x;x0)| ≤ η(|x− x0|)|x− x0|k for some function η with η(s)→ 0 as s→ 0.
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Remark 2.2. The Taylor expansion of order 2 is given by

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
∇2f(x0)(x− x0) · · · (x− x0) +R2(x;x0),

where ∇f = (∂1f, · · · , ∂nf) is the gradient of f and ∇2f(x) =
(
∂jkf(x)

)n
j,k=1

is the

Hessian matrix of f .

Proof. Considering g(y) := f(x0+y), we may assume that x0 = 0. Assume that B(0, r) ⊂
U , fix x ∈ B(0, r), and define

h : (−1− ε, 1 + ε)→ U, h(t) := g(tx),

where ε > 0 satisfies (1 + ε)|x| < r. Then h is a Ck function on (−1 − ε, 1 + ε), and

repeated use of the fundamental theorem of calculus gives

h(t) = h(t)− h(0) + h(0) = h(0) +

∫ t

0

h′(s)ds

= h(0) + h′(0)t+

∫ t

0

(h′(s)− h′(0))ds = h(0) + h′(0)t+

∫ t

0

∫ s

0

h′′(u)duds

= h(0) + h′(0)t+ h′′(0)
t2

2
+

∫ t

0

∫ s

0

(h′′(u)− h′′(0))duds

= · · ·

=
k∑
i=0

h(i)(0)
ti

i!
+

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

(
h(k)(tk)− h(k)(0)

)
dtk · · · dt1.(2.1)

Here we used that
∫ t
0

∫ t1
0
· · ·
∫ tk−1

0
dtk · · · dt1 = tk

k!
(exercise).

Now, computation shows

h′(t) = ∂jf(tx)xj, h′′(t) = ∂jlf(tx)xjxl, · · ·

and

h(k)(t) = ∂j1···jkf(tx)xj1 · · ·xjk .
Applying (2.1) with t = 1 gives the result in the theorem, where

Rk(x) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

[
∂j1···jkf(tkx)− ∂j1···jkf(0)

]
xj1 · · ·xjkdtk · · · dt1.

The bound for Rk follows since ∂j1···jkf is uniformly continuous on compact sets. �

At this point it may be good to mention another convenient form of the Taylor expan-

sion, which we state but will not use. Let N = {0, 1, 2, · · · } be the set of natural numbers.

Then Nn consists of all n-tuples α = (α1, · · · , αn) where the αj are nonnegative integers.

Such an n-tuple is called a multi-index. We write |α| = α1 + · · ·+αn and xα = xα1
1 · · ·xαnn .

For partial derivatives, the notation

∂α =
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn
will be used. We also use the notation α! = α1! · · ·αn!.
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Theorem 2.3 (Taylor expansion, multi-index version). Let f ∈ Ck(U), let x0 ∈ U , and

assume that B(x0, r) ⊂ U . If x ∈ B(x0, r), then

f(x) =
∑
|α|≤k

∂αf(x0)

α!
(x− x0)α +Rk(x0;x),

where Rk satisfies similar bounds as before.

Proof. Exercise. �

2.2. Tensor fields. If f ∈ Ck(U), if x ∈ U and if v ∈ Rn is such that |v| is sufficiently

small, we write the Taylor expansion given in Theorem 2.1 in the form

f(x+ v) =
k∑
l=0

1

l!

[ n∑
j1,··· ,jl=1

∂j1···jlf(x)vj1

]
+Rk(x+ v;x).

The first few terms are

f(x+ v) = f(x) + ∂jf(x)vj +
1

2
∂jkf(x)vjvk + · · ·

Looking at the terms of various degree motivates the following definition.

Definition 2.4 (Tensor fields). An m-tensor field in U is a collection of functions u =(
uj1···jm

)n
j1,··· ,jm=1

, where each uj1···jm is in C∞(U). The tensor field u is called symmetric if

uj1···jm = ujσ(1)···jσ(m)
for any j1, · · · , jm and for any σ which is a permutation of {1, · · · ,m}.

Remark 2.5. This definition is specific to Rn, since we are deliberately not allowing any

other coordinate systems than the Cartesian one. Later on we will consider tensor fields on

manifolds, and their transformation rules under coordinate changes will be an important

feature (these will decide whether the tensor field is covariant, contravariant or mixed).

However, upon fixing a local coordinate system, all tensor fields will look essentially like

the ones defined above.

Example 2.6. (1) The 0-tensor fields in U are just the scalar functions u ∈ C∞(U)

(2) The 1-tensor fields in U are of the form u = (uj)
n
j=1, where uj ∈ C∞(U). Thus

1-tensor fields are exactly the vector fields in U ; the tensor (uj)
n
j=1 is identified

with (u1, · · · , un).

(3) The 2-tensor fields in U are of the form u =
(
uj,k
)n
j,k=1

, where ujk ∈ C∞(U). Thus

2-tensor fields can be identified with smooth matrix functions in U . The 2-tensor

field is symmetric if the matrix is symmetric.

(4) If f ∈ C∞(U), then we have for anym ≥ 0 anm-tensor field u =
(
∂j1···jmf

)n
j1,··· ,jm=1

consisting of partial derivatives of f . This tensor field is symmetric since the mixed

partial derivatives can be taken in any order.

Again by looking at the terms in the Taylor expansion, one can also think that an

m-tensor u =
(
uj1···jm

)n
j1,··· ,jm=1

acts on a vector v ∈ Rn by the formula

v 7→ uj1···jm(x)vj1 · · · vjm .
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The last expression can be interpreted as a multilinear map acting on the m-tuple of

vectors (v, · · · , v).

Definition 2.7 (Multi-linear map). If m ≥ 0, an m-linear map is any map

L : Rn × · · · × Rn → R

such that L is linear in each of its variables separately.

The following theorem is almost trivial, but for later purposes it will be good to know

that a tensor field can be thought of in two ways: either as a collection of coordinate

functions, or as a map on U that takes values in the set of multilinear maps.

Theorem 2.8 (Tensors as multilinear maps). If u =
(
uj1···jm

)n
j1,··· ,jm=1

is an m-tensor field

on U ⊂ Rn, then for any x ∈ U , there is an m-linear map u(x) defined via

u(x)(v1, · · · , vm) = uj1···jm(x)vj11 · · · vjmm , v1, · · · , vm ∈ Rn,

and it holds that uj1···jm(x) = u(x)(ej1 , · · · , ejm). Conversely, if T is a function that assigns

to each x ∈ U an m-linear map T (x), and if the function uj1···jm : x 7→ T (x)(ej1 , · · · , ejm)

are in C∞(U) for each j1, · · · , jm, then (uj1···jm) is an m-tensor field in U .

Proof. Exercise. �
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