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Question set 2

Exercise 1: Nernst equation

Using the Nernst equation,

Erev = −kT
ze

ln

(
Cint

Cext

)
, (1)

where k ' 1.38 · 10−23J/K is the Boltzmann constant, T is the absolute temperature, e is the
elementary charge e ' 1.60 · 10−19 Coulomb, and z is the valence of the ion species.

1.1 Calculate the reversal potential for Na+, K+ and Ca2+ assuming a temperature of 37 ◦C
and the following concentrations:

ion Cint Cext Erev

K+ 140 5

Na+ 10 145

Ca2+ 10−4 1.5



1.2 An experimentalist studies an ion channel by applying constant voltage while measuring
the injected current. Sketch the current-voltage relationship for the three ion species in the
graph below, assuming Iion = g(u− Erev), gNa = 120nS, gK = 36nS, gCa = 0.3nS.
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1.3 How can one read off the reversal potential and the conductance from the graph? Assuming
a resting potential of −65 mV, which type of ion generates an inward/outward current?

Exercise 2: Model of an ion channel

Consider the following model for an ion channel: the electrical current Iion through the channel
is given by

Iion = gionr
n1sn2(u− uion)

where u is the membrane potential of the neuron, gion and uion are two constants, and n1 = 2,
n2 = 1. The quantities r and s obey the equations

dr

dt
= −r − r0(u)

τr(u)

ds

dt
= −s− s0(u)

τs(u)

with r0, s0, τr and τs as shown in Fig.1.

2.1 What is the biological interpretation of the following parameters :

r : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

s : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

gion : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

uion : . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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Figure 1: Graphical representation of the variables r0, s0, τr and τs.

2.2 How does the channel react (in terms of partial or full opening/closing) to a step change
in membrane potential? Suppose that for t < 0, the membrane potential is clamped at a value
u0, and that at t = 0 it instantaneously jumps to a value u′ = u2(1− ε) with ε� 1 (see figure
1 for the values of u0, u

′, u2 and uion) where it is maintained for all t ≥ 0.

• For t < 0, the channels is . . . . . . . . . . . . . . . . because . . . . . . . . . . . . . . . . . . . . . . . . . . .

• At t = 1 ms, the channel is . . . . . . . . . . . . . . because . . . . . . . . . . . . . . . . . . . . . . . . . . .

• At t = 3 ms, the channel is . . . . . . . . . . . . . . because . . . . . . . . . . . . . . . . . . . . . . . . . . .

• At t = 20 ms, the channel is . . . . . . . . . . . . . because . . . . . . . . . . . . . . . . . . . . . . . . . . .

• At t = 100 ms, the channel is . . . . . . . . . . . . because . . . . . . . . . . . . . . . . . . . . . . . . . . .

Exercise 3: Dynamics of conductances

In the Hodgkin-Huxley model, the potassium current obeys the equation:

IK = ḡKn(t)4 (u(t)− EK)

where ḡK is the maximal conductance, EK the potassium reversal potential, and n(t)4 is the
proportion of channels that are open at time t. The quantity n obeys a first-order dynamics

dn

dt
=
n∞(u)− n
τn(u)

,

with voltage-dependent time constant τn and equilibrium value n∞.

In order to determine τn and n∞, Hodgkin and Huxley pharmacologically blocked the sodium
current and measured the response of the potassium current to voltage jumps of various ampli-
tudes. The goal of this exercise is to understand this key experiment by studying a simplified
version of the Hodgkin-Huxley model. Suppose τn and n∞ have the following form:

τn(u) =


1 ms if u ≤ 0 mV
5 ms if 0 < u ≤ 25 mV
1 ms if u > 25 mV



and

n∞(u) =


0 if u ≤ 0 mV

u/50 if 0 < u ≤ 50 mV
1 if u > 50 mV .

3.1 Calculate the response of n(t) to a voltage jump:

u(t) =

{
0 for t < 0
u0 for t ≥ 0
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3.2 Sketch the evolution of n(t) for u0 = 10, 20, and 40 mV .

3.3 For u0 = 40 mV, sketch the behaviour of n(t), n2(t) and n4(t) assuming t� τn. What is
the difference between n(t) and n4(t)?

3.4 Plot the current IK(t) as a function of time for u0 = 40 mV.

3.5 If we measure IK(t) = ḡKn(t)p(u(t) − EK) for voltage steps of various amplitudes, how
can we determine p, τn(u) and n∞(u)?

Exercise 4: Gating dynamics – two equivalent mathematical descriptions

The dynamics of the gating variable m (and similarly for the other variables h and n) are often
formulated as

dm

dt
= αm(u)(1−m)− βm(u)m. (2)

As a reminder, we had
dm

dt
= −m−m0(u)

τm(u)
. (3)

4.1 Calculate m0(u) and τm(u) that make these dynamics equal.

4.2 Assume αm(u) = βm(u)−1. If you assume that m0(u) = 0.5 (1 + tanh [γ(u− θ)]), what is
the resulting expression for αm(u)?

4.3 What is the resulting expression for τm(u)?


