
Evolutionary Robotics
Prof. Dario Floreano

Evolutionary Robotics Laboratory Exercises

Evolutionary Algorithms: part 1

Davide Zappetti (davide.zappetti@epfl.ch)
Anand Bhaskaran(anand.bhaskaran@epfl.ch)

Goal. The goal of this lab is to understand some advantages and pitfalls of evolutionary algorithms
(EAs). In particular, you will observe the effects of the mutation rate, crossover rate, selection
pressure, population size and number of generations in artificial evolution, and reflect on how to
change these parameters when performing an evolution according to different types of fitness
landscapes.

Rules:

 Every exercise poses you some questions on which you should think and elaborate
written answers. No official submission of these written answers is required; however,
this work is crucial in understanding the basics of evolutionary algorithms and
propaedeutic to complete the following Labs, the Robogen project and the final written
exam.

 Next week, before next class, a PDF with the answers will be uploaded and you will be
able to compare them with yours. If you have any question you can discuss with the
teaching assistants in class or send an email to us.

Some information: The labs (TPs) for the Evolutionary robotics course are held in CM 1 103. The
computers of this lab have dual operating system and all the exercises of this course will be
performed in Linux Operating System. Login into the system with the following credentials:

Username: Student
Password: EPFLepfl

We will use the Python programming language in the first two lab sessions.

For the first two lab sessions, you will not have to do much programming yourself. However, a
basic understanding of Python is recommended. If you are not familiar with Python, you can
find numerous info and tutorials on the official python website: or through the web.

Getting Started. Once you are logged in and comfortable with the computers in CM 1103, you
will have to download the file EA_exercises_part1.zip from Moodle and unzip it. Open Visual
Studio Code or VSCode, a code editor installs in your computer (you can do this by typing
“VSCode” in the search box). Open the File menu and select “Open Folder” then navigate to the
downloaded exercise directory.

mailto:davide.zappetti@epfl.ch
mailto:anand.bhaskaran@epfl.ch
https://www.python.org/

This lab employs the inspyred1 and other python framework which you should install. To do this,
firstly open VSCode Terminal by selecting Terminal-> New Terminal and execute the following command

pip3 install --upgrade –r requirements.txt

This should automatically install all the required frameworks for you. To check if everything is
fine execute the following command.

python3 test.py

>> All good.

If you see “All good.” Then everything is working properly. However, if you see an error it
means something went wrong and you should ask one of TAs for assistance.

Each exercise has a corresponding .py file (named after the exercise number: exercise_1_1.py,
exercise_1_2.py, etc.). To solve the exercises, you will have to open, edit, and run these .py
files. You can run all the exercises as follows:

python3 <<exercise_i_j>>.py

Note. In this lab, the genome of an individual is always a vector of real-valued parameters x = [x1
x2 … xN] (keep in mind that there are other types of encodings, e.g. bit strings, which will not be
explored in this lab). The fitness of an individual is given by the fitness function f(x). Here, the aim
of the EA is to minimize the function f(x), i.e., to find the vector xmin that has the lowest value
f(x). In other words, lower values f(x) correspond to a better fitness.

1 http://pythonhosted.org/inspyred/

http://pythonhosted.org/inspyred/

Exercise 1

In this first exercise, we will not yet run a complete EA. Instead, we consider a single parent
individual x0, from which a number of offspring individuals are created using a Gaussian mutation
operator (which adds a random number from a Gaussian distribution with mean zero and
standard deviation to each parameter xi of the parent). The fitness function is defined as:

This fitness function is unimodal, it has a single global minimum at the origin. We will analyze the
effects of mutations on the fitness depending on the value of the parent x0, the mutation
magnitude (the standard deviation), and the number of dimensions N of the search space.

Exercise 1.1

In this exercise, single parent (at a random location) is
mutated to generate multiple offspring. To generate
offspring from a single parent x0 using a Gaussian
mutation operator (which adds a random number from a
Gaussian distribution with mean zero and standard
deviation to the parent). Generate offspring from
different parents (e.g. x0=0.1, 1, 10) using different
mutation magnitudes (standard deviations). First consider the one-dimensional case, then two
dimensions, and finally many dimensions (e.g. N =100). For one or two dimensions, the fitness
landscape with the parent and the offspring is shown. For more dimensions, a boxplot2 with the
fitness of the offspring is shown where the green, dashed line is the fitness of the parent. As our
objective is to find the global minimum, try tuning the parameters such that at least one of the
children has near zero fitness. Try to answer the following questions:

2 Visit http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot if you are unfamiliar

with boxplots

http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot

 Do the mutations tend to improve or worsen the fitness of the parent?

 Are low or high mutation magnitudes best for improving the fitness? How does this
depend on the initial value of the parent and on the number of dimensions of the search
space?

Exercise 1.2

Run the exercise_1_2.py file to confirm the observations that you did qualitatively in the previous
exercise by plotting boxplots side-by-side to evaluate the statistical significance of observed
differences. Compare different values for:

 The number of dimensions of the search space

 The value of the parent (how close it is to the optimum)

 The mutation magnitude
If you vary one of these three parameters, make sure that you set the other two at a constant
value (otherwise it may be difficult to interpret your results). Try to confirm the answers that you
gave in the previous exercise.

Exercise 2

We will now use an EA to find the minimum of the unimodal fitness function defined in the
previous exercise and analyze the effect of the mutation magnitude and the dimensionality of
the search space and number of generations on the results.

Exercise 2.1

Run exercise_2_1.py to run a basic, mutation-only EA on the one-dimensional function first. How
close is the best individual from the global optimum? Increase the dimensionality of the search
space to two and more. How close are the best individuals now from the global optimum? Can
you get as close as in the one-dimensional case by modifying the mutation magnitude and/or the
number of generations?

Exercise 2.2

Run the exercise_2_2.py file to do three batches of 30 runs of the EA with different mutation
magnitudes (it may take a minute). The boxplot compares the best fitness values obtained in the
three conditions. Try to explain the result.

Exercise 3

In this exercise we will analyze the effect of crossover in the EA. An offspring individual is formed
from two parent individuals x1 and x2 by randomly taking the value for each entry xi either from
x1 or x2. The EA has a parameter defining the fraction of offspring that is created using crossover
at each generation (the remaining individuals are created via asexual reproduction).

Exercise 3.1

Using the same setup as in the first two exercises, exercise_3_1.py file does 30 runs using
mutation only (as in the previous exercises), and 30 runs using crossover only. The boxplots
compare the best fitness values obtained in the two cases. See if you can explain the results.

Exercise 3.2

Run exercise_3_2.py to compare the best finesses obtained by varying the fraction of offspring
created using crossover (while using a fixed mutation probability of 0.5 i.e. each loci of each
genome will have a 50% chance of being mutated).

Is there an optimal crossover fraction for this fitness function? Interpret the results.

Note: You can also set mutation rate to zero in this exercise to realize that effect of crossover
only.

Exercise 4

We will now investigate the effect of the selection pressure.

Run the exercise_4.py file to compare the best fitness values and the distances from the global
optimum obtained using tournament sizes 2 and 10. Note: In the previous exercises, we were
using tournament selection with a tournament size of 2.

 Which tournament size gives better results for the fitness function sphere and why?

 Which tournament size is better for the fitness function Rastrigin3 and why?

Exercise 5 : Let’s explore!

In this exercise you will investigate running the EA on many test functions commonly used to
benchmark optimization algorithms. Run the EA on the benchmark functions shown in the below
(especially the multimodal functions) and adapt the mutation magnitude, crossover rate,
selection pressure, and population size so as to get the best results. If you run the code as
provided it will initialize and bound the values of your population vectors to suitable ranges. You
may comment/uncomment certain lines to alter this behavior. See the comments in
exercise_5.py for further details.

Sphere Function Rastrigin Function Ackley Function

3 http://pythonhosted.org/inspyred/reference.html#inspyred.benchmarks.Rastrigin

http://pythonhosted.org/inspyred/reference.html#inspyred.benchmarks.Rastrigin

Griewank function Rosenbrock Function Schwefel Function

You may first try the 1D or 2D case, which has the advantage that the fitness landscape can be
visualized. However, keep in mind that sometimes the resolution of the plot is not sufficient to
accurately represent a function.

IF YOU MADE IT HERE IN THE FIRST TP SESSION GOOD JOB, WE WILL CONTINUE WITH THE

FOLLOWING EXERCISES NEXT WEEK!

