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Goal. The goal of this lab is to understand some advantages and pitfalls of evolutionary algorithms 
(EAs). In particular, you will observe the effects of the mutation rate, crossover rate, selection 
pressure, population size and number of generations in artificial evolution, and reflect on how to 
change these parameters when performing an evolution according to different types of fitness 
landscapes.   
 
Rules: 

 Every exercise poses you some questions on which you should think and elaborate 
written answers. No official submission of these written answers is required; however, 
this work is crucial in understanding the basics of evolutionary algorithms and 
propaedeutic to complete the following Labs, the Robogen project and the final written 
exam. 

 Next week, before next class, a PDF with the answers will be uploaded and you will be 
able to compare them with yours. If you have any question you can discuss with the 
teaching assistants in class or send an email to us. 
 

Some information:  The labs (TPs) for the Evolutionary robotics course are held in CM 1 103. The 
computers of this lab have dual operating system and all the exercises of this course will be 
performed in Linux Operating System. Login into the system with the following credentials: 
 

Username: Student 
Password: EPFLepfl 

 
We will use the Python programming language in the first two lab sessions. 
 
For the first two lab sessions, you will not have to do much programming yourself. However, a 
basic understanding of Python is recommended.  If you are not familiar with Python, you can 
find numerous info and tutorials on the official python website: or through the web.  
 
Getting Started.  Once you are logged in and comfortable with the computers in CM 1103, you 
will have to download the file EA_exercises_part1.zip from Moodle and unzip it. Open Visual 
Studio Code or VSCode, a code editor installs in your computer (you can do this by typing 
“VSCode” in the search box). Open the File menu and select “Open Folder” then navigate to the 
downloaded exercise directory.  
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This lab employs the inspyred1  and other python framework which you should install. To do this, 
firstly open VSCode Terminal by selecting Terminal-> New Terminal and execute the following command 
 

pip3 install --upgrade –r requirements.txt  
 
This should automatically install all the required frameworks for you. To check if everything is 
fine execute the following command. 
 
python3 test.py  

>> All good. 
 

 
If you see “All good.”  Then everything is working properly.  However, if you see an error it 
means something went wrong and you should ask one of TAs for assistance. 
 
Each exercise has a corresponding .py file (named after the exercise number: exercise_1_1.py, 
exercise_1_2.py, etc.). To solve the exercises, you will have to open, edit, and run these .py 
files. You can run all the exercises as follows: 
 
python3 <<exercise_i_j>>.py 

 
  
Note.  In this lab, the genome of an individual is always a vector of real-valued parameters x = [x1 
x2 … xN] (keep in mind that there are other types of encodings, e.g. bit strings, which will not be 
explored in this lab). The fitness of an individual is given by the fitness function f(x). Here, the aim 
of the EA is to minimize the function f(x), i.e., to find the vector xmin that has the lowest value 
f(x). In other words, lower values f(x) correspond to a better fitness.  

                                                           

1  http://pythonhosted.org/inspyred/  
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Exercise 1 
 
In this first exercise, we will not yet run a complete EA. Instead, we consider a single parent 
individual x0, from which a number of offspring individuals are created using a Gaussian mutation 
operator (which adds a random number from a Gaussian distribution with mean zero and 
standard deviation  to each parameter xi of the parent). The fitness function is defined as: 
   
 
 
 

 
 
 
 
 

 
 
 
 
This fitness function is unimodal, it has a single global minimum at the origin. We will analyze the 
effects of mutations on the fitness depending on the value of the parent x0, the mutation 
magnitude (the standard deviation ), and the number of dimensions N of the search space. 
 

Exercise 1.1 
 
In this exercise, single parent (at a random location) is 
mutated to generate multiple offspring. To generate 
offspring from a single parent x0 using a Gaussian 
mutation operator (which adds a random number from a 
Gaussian distribution with mean zero and standard 
deviation  to the parent). Generate offspring from 
different parents (e.g. x0=0.1, 1, 10) using different 
mutation magnitudes (standard deviations ). First consider the one-dimensional case, then two 
dimensions, and finally many dimensions (e.g. N =100). For one or two dimensions, the fitness 
landscape with the parent and the offspring is shown. For more dimensions, a boxplot2 with the 
fitness of the offspring is shown where the green, dashed line is the fitness of the parent. As our 
objective is to find the global minimum, try tuning the parameters such that at least one of the 
children has near zero fitness. Try to answer the following questions: 
 

                                                           

2 Visit http://matplotlib.org/api/pyplot_api.html#matplotlib.pyplot.boxplot if you are unfamiliar 

with boxplots 
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 Do the mutations tend to improve or worsen the fitness of the parent? 

 Are low or high mutation magnitudes best for improving the fitness? How does this 
depend on the initial value of the parent and on the number of dimensions of the search 
space? 

 

Exercise 1.2 
 
Run the exercise_1_2.py file to confirm the observations that you did qualitatively in the previous 
exercise by plotting boxplots side-by-side to evaluate the statistical significance of observed 
differences. Compare different values for: 

 The number of dimensions of the search space 

 The value of the parent (how close it is to the optimum) 

 The mutation magnitude 
If you vary one of these three parameters, make sure that you set the other two at a constant 
value (otherwise it may be difficult to interpret your results). Try to confirm the answers that you 
gave in the previous exercise. 
 
 

Exercise 2 
 
We will now use an EA to find the minimum of the unimodal fitness function defined in the 
previous exercise and analyze the effect of the mutation magnitude and the dimensionality of 
the search space and number of generations on the results. 
 

 
 
Exercise 2.1 
 
Run exercise_2_1.py to run a basic, mutation-only EA on the one-dimensional function first. How 
close is the best individual from the global optimum? Increase the dimensionality of the search 
space to two and more. How close are the best individuals now from the global optimum? Can 
you get as close as in the one-dimensional case by modifying the mutation magnitude and/or the 
number of generations? 
 

Exercise 2.2 
 



Run the exercise_2_2.py file to do three batches of 30 runs of the EA with different mutation 
magnitudes (it may take a minute). The boxplot compares the best fitness values obtained in the 
three conditions. Try to explain the result. 
 

Exercise 3 

 
In this exercise we will analyze the effect of crossover in the EA. An offspring individual is formed 
from two parent individuals x1 and x2 by randomly taking the value for each entry xi either from 
x1 or x2. The EA has a parameter defining the fraction of offspring that is created using crossover 
at each generation (the remaining individuals are created via asexual reproduction). 
 

 
 

Exercise 3.1 
 
Using the same setup as in the first two exercises, exercise_3_1.py file does 30 runs using 
mutation only (as in the previous exercises), and 30 runs using crossover only. The boxplots 
compare the best fitness values obtained in the two cases. See if you can explain the results. 
 

Exercise 3.2 
 
Run exercise_3_2.py to compare the best finesses obtained by varying the fraction of offspring 
created using crossover (while using a fixed mutation probability of 0.5 i.e. each loci of each 
genome will have a 50% chance of being mutated).  
 
Is there an optimal crossover fraction for this fitness function? Interpret the results. 
 
Note: You can also set mutation rate to zero in this exercise to realize that effect of crossover 
only.  

Exercise 4 
 
We will now investigate the effect of the selection pressure. 
 



 
 
Run the exercise_4.py file to compare the best fitness values and the distances from the global 
optimum obtained using tournament sizes 2 and 10. Note: In the previous exercises, we were 
using tournament selection with a tournament size of 2. 

 Which tournament size gives better results for the fitness function sphere and why? 

 Which tournament size is better for the fitness function Rastrigin3 and why? 
 
 

Exercise 5 : Let’s explore!  
 
In this exercise you will investigate running the EA on many test functions commonly used to 
benchmark optimization algorithms. Run the EA on the benchmark functions shown in the below 
(especially the multimodal functions) and adapt the mutation magnitude, crossover rate, 
selection pressure, and population size so as to get the best results. If you run the code as 
provided it will initialize and bound the values of your population vectors to suitable ranges.  You 
may comment/uncomment certain lines to alter this behavior.  See the comments in 
exercise_5.py for further details.   
 
 

   

Sphere Function Rastrigin Function Ackley Function 

                                                           

3 http://pythonhosted.org/inspyred/reference.html#inspyred.benchmarks.Rastrigin  
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Griewank function Rosenbrock Function Schwefel Function 

 
You may first try the 1D or 2D case, which has the advantage that the fitness landscape can be 
visualized. However, keep in mind that sometimes the resolution of the plot is not sufficient to 
accurately represent a function. 
 

IF YOU MADE IT HERE IN THE FIRST TP SESSION GOOD JOB, WE WILL CONTINUE WITH THE 

FOLLOWING EXERCISES NEXT WEEK! 


