
Announcements

• Room change ELA1

• Parallelism and Concurrent final exam overlap

• Students without pre-requisite courses

Recap of Week 1

Pamela Delgado

February 20, 2019

(slides Willy Zwaenepoel)

What does the OS do?

• Abstraction: makes hardware easier to use

• Resource management: allocate hardware
resources between users

Key Components

• Process management

– CPU processes

• Memory management

– Memory address spaces

• File systems

– Disk, SSD files

User/Kernel Mode

• User mode:

– Applications

– System programs

• Kernel mode:

– OS kernel

User/Kernel Mode

user

kernel

user1 user2 user3

kernel

daemon1 daemon2 daemon3 daemon4

System Calls

• Only way for application to call kernel

• Special instruction

• Often wrapped by kernel API, libc

Interaction Application/Kernel

libc

user

kernel

system call interface

OS

User C
program

Kernel API
Library

Kernel is Event-Driven Program

• Nothing to do Do nothing

Kernel is Event-Driven Program

• Nothing to do

• Interrupt (from device)

• Trap (from process)

• System call (from process}

Do nothing

Start running

Lecture 2
Process Management

Pamela Delgado

February 27, 2019

(slides Willy Zwaenepoel)

Key Concepts

• Process

• Linux process tree

• Process switch

• Process scheduler

What is a Process?

• Process = program in execution

• Program

– Executable code

– Usually represented by a file on disk

• Process

– Executing code

– Usually represented in memory

What does a Process do?
(as far as a user is concerned)

• It can do anything

• Shell
• Compiler
• Editor
• Browser
• …

• These are all processes

Process Identification

• Each process has a unique process identifier

• Always referred to as “pid”

Basic Operations on Processes

• Create a process

• Terminate a process

– Normal exit

– Error

– Terminated by another process

Linux Process Primitives

• pid = fork()

• exec(filename)

• exit()

• wait()

pid = fork()

• Creates an identical copy of parent

• In parent, returns pid of child

• In child, returns 0

exec(filename)

• Loads executable from file with filename

wait()

• Wait for one of its children to terminate

exit()

• Terminate the process

Typical fork()-ing Code Segment

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

Before fork()

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

After fork()

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

parent child

After fork()

if (pid_child) {
wait()

}
else {

exec(filename)
}

if (0) {
wait()

}
else {

exec(filename)
}

parent child

After fork()

if (pid_child) {
wait()

}
else {

exec(filename)
}

if (0) {
wait()

}
else {

exec(filename)
}

parent child

After exec()

if (pid_child) {
wait()

}
else {

exec(filename)
}

main() {
…

exit()
}

parent child

After exit()

if (pid_child) {
wait() returns

}
else {

exec(filename)
}

parent

Question about fork-exec

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

does it make sense
to write code here?

Outline of Linux Shell

forever {
read from input
if(logout) exit()
if (pid = fork()) {

wait()
}
else {

exec(filename)
}

}

Operation

• New command line (!= logout)

– Shell forks a new process and waits

– Child executes program on command line

The Linux Process Tree

Boot

• First process after boot
is the init process

• Happens by black magic

init

User logs in

init

User logs in

• Init forks and waits

• Child execs shell

init

User logs in

• Init forks and waits

• Child execs shell

init

init

User logs in

• Init forks and waits

• Child execs shell

init

bash

User runs make

init

bash

User runs make

• Shell forks and waits

• Child execs make

init

bash

User runs make

• Shell forks and waits

• Child execs make

init

bash

bash

User runs make

• Shell forks and waits

• Child execs make

init

bash

make

Another user logs in

init

bash

make

Another user logs in

• Init forks and waits

• Child execs shell

init

bash

make

Another user logs in

• Init forks and waits

• Child execs shell

init

bash

make

init

Another user logs in

• Init forks and waits

• Child execs shell

init

bash

make

csh

Make runs gcc

init

bash

make

csh

Make runs gcc

• Make forks and waits

• Child execs gcc

init

bash

make

csh

Make runs gcc

• Make forks and waits

• Child execs gcc

init

bash

make

csh

make

Make runs gcc

• Make forks and waits

• Child execs gcc

init

bash

make

csh

gcc

Gcc finishes

• Gcc exits

• Make returns from wait

init

bash

make

csh

Gcc finishes

• Gcc exits

• Make returns from wait

init

bash

make

csh

Gcc finishes

• Gcc exits

• Make returns from wait

init

bash

make

csh

Second user logs out

init

bash

make

csh

Second user logs out

• Csh exits

• Init returns from wait

init

bash

make

csh

Second user logs out

• Csh exits

• Init returns from wait

init

bash

make

Second user logs out

• Csh exits

• Init returns from wait

init

bash

make

Make runs cp

• Make forks and waits

• Child execs cp

init

bash

make

Make runs cp

• Make• Make works and waits

• Child execs cp

init

bash

make

make

Make runs cp

• Make• Make forks and waits

• Child execs cp

init

bash

make

cp

Why fork+exec vs. create?

Process = Environment + Code

• Environment includes:

– Ownership

– Open files

– Values of environment variables

Process = Environment + Code

environment

code

After a fork()

environment

code

environment

code

After an exec() in the Child

environment

code

environment

new
code

Advantage

• Child automatically inherits environment

Question about fork-exec

if (pid = fork()) {
wait()

}
else {

exec(filename)
}

does it make sense
to write code here?

Given New Definition of exec

forever {
read from input
if(logout) exit()
if (pid = fork()) {

wait()
}
else {

exec(filename)
}

}

does it make sense
to write code here?

Answer

• Yes

• Shell can manipulate environment of child

• For instance, can manipulate stdin and stdout

• See exercises for details

What does a process do?
(as far as a user is concerned)

• It can do anything

• Shell
• Compiler
• Editor
• Browser
• …

• These are all processes

What does a process do?
(as far as the OS is concerned)

• Either it computes (uses the CPU)

• Or it does I/O (uses a device)

Single Process System

P1

Start
Process

Single Process System

Compute

P1

Single Process System

I/O
Request

P1

Single Process System

I/O
Complete

P1

Single Process System

Compute

P1

Single Process System

I/O
Request

P1

Single Process System

I/O
Complete

P1

Single Process System

Compute

P1

Single Process System

End
Process

P1

A Second Process

P1

P2

A Second Process

wait

P1

P2

Two Issues

long wait times

P1

P2

Two Issues

P1

P2

low utilization (long CPU idle times)

Single Process System

• Is very inefficient

– Very poor CPU utilization

• Is very annoying

– You can’t do anything else

Multiprocess System

• Many processes in the system

• One uses the CPU

• When it does an I/O

– It waits for the I/O to complete

– It leaves the CPU idle

• Another process gets the CPU

Multiprocess System

P1

Multiprocess System

P1

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

Multiprocess System

P1

P2

P3

short wait time

Multiprocess System

P1

P2

P3

high utilization (short CPU idle times)

Process State Diagram
for Multiprocessing System

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Two Important Concepts

• Process switch

• Process scheduling

Process Switch

P1

P2

P3

Process Switch

• Switch from one process running on the CPU
to another process

• Such that you can later switch back to the
process currently holding the CPU

Process Switch Implementation

• Process consists of:

– Code (including libraries)

– Stack

– Heap

– Registers (including PC)

– MMU info (ignore for now)

Process

code

stack

registers

MMU info

heap

Process Switch Implementation

• Process:

– Code

– Stack

– Heap

– Registers

– MMU info

Resides in process-private locations

Resides in shared locations

Process Switch P1 P2

• Save registers(P1) to somewhere

• Restore registers(P2) from somewhere

• Where to save to and restore from?

Process Control Block

• Kernel must remember processes

• Each process has a process control block (PCB)

• Process control block contains

– Process identifier (unique id)

– Process state

– Space to support process switch (save area)

• Process Control Block Array

– Indexed by hash(pid)

Process Switch P1 P2

• Save registers PCB[P1].SaveArea

• Restore PCB[P2].SaveArea registers

Process Switch - Caveat

• A process switch is an expensive operation!

• Requires saving and restoring lots of stuff

– Not just registers

– Also MMU information

• Has to be implemented very efficiently

• Has to be used with care

Two Important Concepts

• Process switch

• Process scheduling

Process Scheduling

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Process Scheduling

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Many processes may be ready.
Process scheduler picks one.

Process Scheduling

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Scheduler

Problem

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Scheduler

A process could run forever, locking all other processes out

Solution

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Scheduler Timer

Preemptive vs Non-preemptive Scheduler

• Non-preemptive:

– Process only voluntarily relinquishes CPU

• Preemptive

– Process may be forced off CPU

Advantages - Disadvantages

• Non-preemptive

– Process can monopolize CPU

– Only useful in special circumstances

• Preemptive

– Process can be thrown out at any time

– Usually not a problem, but sometimes it is

• Intermediate solutions are possible

Process Scheduling Implementation

• Remember running process

• Maintain sets of queues

– (CPU) ready queue

– I/O device queue (one per device)

• PCBs sit in queues

How does the Scheduler run?

• Scheduler is part of the kernel

• How does kernel run?

How does Scheduler run?

Running

Waiting

New Terminated

Ready

I/O

I/O
Completion

Scheduler Timer

The scheduler runs when
1) process starts or terminates (system call)
2) running process performs an I/O (system call)
3) I/O completes (I/O interrupt)
4) timer expires (timer interrupt)

How does the Scheduler Run?

• At end of handlers for

– System calls

– Interrupts

– Traps

• Scheduler runs: decides on process to run

• Switches to a new process

• Sets another timer

Scheduling Algorithm

• Decides which ready process gets to run

What makes a good scheduling algorithm?

• It depends …

Interactive vs. Batch

• Interactive = you are waiting for the result

– E.g., browser, editor, …

– Tend to be short

• Batch = you will look at result later

– E.g., supercomputing center, offline analysis, …

– Tend to be long

What makes a good scheduler for interactive?

• Short response time

• Response time = wait from ready to running

What makes a good scheduler for batch?

• High throughput

• Throughput = number of jobs completed

Response Time vs. Throughput

• Conflicting goals

• From throughput perspective

– Scheduler is overhead

– Run scheduler as little as possible

• From response time perspective

– Want to go quickly from ready to running

– Run scheduler often

Trouble is …

• Often, scheduler does not know a priori if a
process is interactive or batch

What makes a good scheduler?

• It depends …

• Possibilities:

– Fast response time for interactive processes

– High throughput for batch process

What makes a good scheduler?

• It depends …

• Possibilities:

– Fast response time for interactive processes

– High throughput for compute-bound process

– “Important” jobs get done quickly

– “Fairness”

– …

Example Scheduling Algorithms

• First come, first served (FCFS)

• Shortest job first (SJF)

• Round robin (RR)

• Priority (PR)

• Combination schedulers

A Note about Terminology

• Think of scheduler as managing a queue

• Process ready: insert it into queue

– According to scheduling policy

• Scheduling decision: run head of queue

• Not always implemented this way!!

First come, first served (FCFS)

• Process ready: insert at tail of queue

• Head of queue: “oldest” ready process

• By definition, non-preemptive

First come, first served (FCFS)

• Process ready: insert at tail of queue

• Head of queue: “oldest” ready process

• By definition, non-preemptive

• Low overhead – few scheduling events

• Good throughput

• Uneven response time – stuck behind long job

• Extreme case – process monopolizes CPU

Shortest Job First (SJF)

• Process ready

– Insert in queue according to length

• Head of queue: “shortest” process

• Can be preemptive or non-preemptive

• From now on, only consider preemptive

Shortest Job First (SJF)

• Process ready
– Insert in queue according to length

• Head of queue: “shortest” process

• Can be preemptive or non-preemptive

• From now on, only consider preemptive

• Good response time for short jobs

• Can lead to starvation of long jobs

• Difficult to predict job length

Round Robin (RR)

• Define time quantum Δ

• Process ready: put at tail of queue

• Head of queue: run for Δ time

• After Δ

– Put running process at the tail of the queue

– Re-schedule

RR: Compromise
for Long and Short Jobs

• Short jobs finish quickly (a few rounds)

• Long jobs are not postponed forever

• No need to know job length

• Discover length by how many Δ’s it needs

Round Robin (RR)

• How to pick Δ?
• Too small

– Many scheduling events
– Good response time
– Low throughput

• Too large
– Few scheduling events
– Good throughput
– Poor response time

• Typical value: ~ 10 milliseconds

Priority (PR)

• Assign each process a priority Pr(P)

• Process ready:

– Insert in queue according to Pr(P)

• Head of queue: highest-priority process

Priority (PR)

• Assign each process a priority Pr(P)

• Process ready:

– Insert in queue according to Pr(P)

• Head of queue: highest-priority process

• Differentiation according to job importance

• Prone to starvation of low-priority jobs

A Variation: Priority + Aging (PR + A)

• Assign each process a priority Pr(P)

• Process ready:

– Insert in q according to Pr(P)

• Reduce priority over time

A Variation: Priority + Aging (PR + A)

• Assign each process a priority Pr(P)

• Process ready:

– Insert in q according to Pr(P)

• Reduce priority over time

• Lessens problem of starving low-priority jobs

Combination Approaches

• Almost all real schedulers are combinations

• Examples:

– PR + RR

– RR + FCFS

• Typical implementation:

– Multiple queues

PR + RR

• As with priority

• But RR between processes with equal priority

• Typical implementation:

– Multiple queues, one for each priority

– Process ready:

• Insert at tail of queue with its priority

– Schedule:

• Head of non-empty queue with highest priority for Δ

RR + FCFS

• Two queues: one for RR, one for FCFS

• Initially, process goes in RR queue

• After n Δ’s, it goes in FCFS queue

Scheduler Implementation

• Must be very efficient

• Runs (at least) every Δ

• If Δ = 100 msec, scheduler run takes 10 msec

10% of your machine is gone!

• Be careful with large number of processes

Summary

• Process

• Linux process tree

• Process switch

• Process scheduler

Summary

• Process

– Program in execution

• Linux process tree

• Process switch

• Process scheduler

Summary

• Process

• Linux process tree

– Created by fork() / exec() / wait() / exit()

• Process switch

• Process scheduler

Summary

• Process

• Linux process tree

• Process switch

– Change of process using the CPU

– Save and restore registers and other info

• Process scheduler

Summary

• Process

• Linux process tree

• Process switch

• Process scheduler

– Decides which process to run next

