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1. Introduction

Question 1.1. What kinds of quantities and operations appear in relation to analysis (or

multivariable calculus) in a bounded open set U ⊂ Rn?

Some possible answers:

• Functions: continuity, partial derivatives, integrals, Lp spaces, Taylor expansions,

Fourier or related expansions

• Vector fields: gradient, curl, divergence

• Measures, distributions, flows

• Laplace operator, Laplace, heat and wave equations

• Integration by parts formulas (Gauss, divergence, Green)

• Tensor fields, differential forms

• Distance, distance-minimizing curves (line segments), area, volume, perimeter

Imagine similar concepts on a hypersurface (e.g. double torus in R3)

This course is an introduction to analysis on manifolds. The first part of the course

title has the following Wikipedia description: “Mathematical Analysis is a branch of

mathematics that includes the theories of differentiation, integration, measure, limits,

infinite series, and analytic functions. These theories are usually studied in the context of

real and complex numbers and functions. Analysis evolved from calculus, which involves

the elementary concepts and techniques of analysis. Analysis may be distinguished from

geometry; however, it can be applied to any space of mathematical objects that has a
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definition of nearness (a topological space) or specific distances between objects (a metric

space).”

Following this description, our purpose will be to study in particular differentiation,

integration, and differential equations on spaces that are more general than the standard

Euclidean space Rn. Different classes of spaces allow for different kinds of analysis:

• Topological spaces are a good setting for studying continuous functions and limits,

but in general they do not have enough structure to allow studying derivatives

• The smaller class of metric spaces admits certain notions of differentiability, but

in particular higher order derivatives are not always well defined

• Differentiable manifolds are modeled after pieces of Euclidean space and allow

differentiation and integration, but they do not have a canonical Laplace operator

and thus the theory of differential equations is limited

The class of spaces studied in this course will be that of Riemannian manifolds. These

are differentiable manifolds with an extra bit of structure, a Riemannian metric, that

allows to measure lengths and angles of tangent vectors. Adding this extra structure

leads to a very rich theory where many different parts of mathematics come together. We

mention a few related aspects, and some of these will be covered during this course (the

more advanced topics that will be covered will be chosen according to the interests of the

audience):

(1) Calculus. Riemannian manifolds are differentiable manifolds, hence the usual no-

tions of multivariable calculus on differentiable manifolds apply (derivatives, vector

and tensor fields, integration of differential forms)

(2) Metric geometry. Riemannian manifolds are metric spaces: there is a natural

distance function on any Riemannian manifold such that the corresponding metric

space topology coincides with the usual topology. Distances are realized by certain

distinguished curves called geodesics, and these can be studied via a second order

ODE (the geodesic equation).

(3) Measure theory. Any oriented Riemannian manifold has a canonical measure given

by the volume form. The presence of this measure allows to integrate functions

and to define Lp spaces on Riemannian manifolds.

(4) Differential equations. There is a canonical Laplace operator on any Riemannian

manifold, and all the classical linear partial differential equations (Laplace, heat,

wave) have natural counterparts

(5) Dynamical systems. The geodesic flow on a closed Riemannian manifold is a

Hamiltonian flow on the cotangent bundle, and the geometry of the manifold is

reflected in properties of the flow (such as complete integrability or ergodicity)

(6) Conformal geometry. The notions of conformal and quasiconformal mappings

make sense on Riemannian manifolds, and there is enough underlying structure to

provide many tools for studying them

(7) Topology. There are several ways of describing topological properties of the un-

derlying manifold in terms of analysis. In particular, Hodge theory characterizes

the cohomology of the space via the Laplace operator acting on differential forms,
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and Morse theory describes the topological type of the space via critical points of

a smooth function on it

(8) Curvature. The notion of curvature is fundamental in mathematics, and Riemann-

ian manifolds are perhaps the most natural setting for studying curvature. Related

concepts include the Riemann tensor, the Ricci tensor, and scalar curvature. There

has been recent interest in lower bounds for Ricci curvature and their applications

(9) Inverse problems. Many interesting inverse problems have natural formulations

on Riemannian manifolds, such as integral geometry problems where one tries to

determine a function from its integrals over geodesics, or spectral rigidity problems

where one tries to determine properties of the underlying space from knowledge of

eigenvalues of the Laplacian.

(10) Geometric analysis. There are many branches of mathematics that are called

geometric analysis. One particular topic is that of geometric evolution equations,

where geometric quantities evolve according to a certain PDE. One of the most

famous such equations is Ricci flow, where a Riemannian metric is deformed via its

Ricci tensor. This was recently used by Perelman to complete Hamilton’s program

for proving the Poincaré and geometrization conjectures.

2. Calculus in Euclidean spaces

Let U be any nonempty open subset of Rn (not necessarily bounded, and could be

equal to Rn). We fix standard Cartesian coordinates x = (x1, · · · , xn) and will use these

coordinates throughout this chapter. We may sometimes write xj instead of xj, and we

will also denote by vj or vj the j-th coordinate of a vector v ∈ Rn.

2.1. Functions and Taylor expansions. Let C(U) be the set of continuous functions

on U . For partial derivatives, we will write

∂jf =
∂f

∂xj
and ∂j1···jkf =

∂kf

∂xj1 · · · ∂xjk
.

We denote by Ck(U) the set of k times continuously differentiable real valued functions

on U . Thus

Ck(U) =
{
f : U → R : ∂j1···jlf ∈ C(U) whenever l ≤ k and j1, · · · , jl ∈ {1, · · · , n}

}
.

Recall also that if f ∈ Ck(U), then ∂j1···jkf = ∂jσ(1)···jσ(k) for any permutation σ of

{1, · · · , k}.
We also denote by C∞(U) the infinitely differentiable functions on U , that is,

C∞(U) =
⋂
k≥0

Ck(U).

Theorem 2.1 (Taylor expansion). Let f ∈ Ck(U), let x0 ∈ U , and assume thatB(x0, r) ⊂
U . If x ∈ B(x0, r), then

f(x) =
k∑
l=0

1

l!

[ ∑
j1,··· ,jl

∂j1···jlf(x0)(x− x0)j1 · · · (x− x0)jl

]
+Rk(x;x0),
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where |Rk(x;x0)| ≤ η(|x− x0|)|x− x0|k for some function η with η(s)→ 0 as s→ 0.

Remark 2.2. The Taylor expansion of order 2 is given by

f(x) = f(x0) +∇f(x0) · (x− x0) +
1

2
∇2f(x0)(x− x0) · · · (x− x0) +R2(x;x0),

where ∇f = (∂1f, · · · , ∂nf) is the gradient of f and ∇2f(x) =
(
∂jkf(x)

)n
j,k=1

is the

Hessian matrix of f .

Proof. Considering g(y) := f(x0 +y), we may assume that x0 = 0. Assume that B(0, r) ⊂
U , fix x ∈ B(0, r), and define

h : (−1− ε, 1 + ε)→ R, h(t) := g(tx),

where ε > 0 satisfies (1 + ε)|x| < r. Then h is a Ck function on (−1 − ε, 1 + ε), and

repeated use of the fundamental theorem of calculus gives

h(t) = h(t)− h(0) + h(0) = h(0) +

∫ t

0

h′(s)ds

= h(0) + h′(0)t+

∫ t

0

(h′(s)− h′(0))ds = h(0) + h′(0)t+

∫ t

0

∫ s

0

h′′(u)duds

= h(0) + h′(0)t+ h′′(0)
t2

2
+

∫ t

0

∫ s

0

(h′′(u)− h′′(0))duds

= · · ·

=
k∑
i=0

h(i)(0)
ti

i!
+

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

(
h(k)(tk)− h(k)(0)

)
dtk · · · dt1.(2.1)

Here we used that
∫ t

0

∫ t1
0
· · ·
∫ tk−1

0
dtk · · · dt1 = tk

k!
(exercise).

Now, computation shows

h′(t) = ∂jf(tx)xj, h′′(t) = ∂jlf(tx)xjxl, · · ·

and

h(k)(t) = ∂j1···jkf(tx)xj1 · · ·xjk .
Applying (2.1) with t = 1 gives the result in the theorem, where

Rk(x) =

∫ t

0

∫ t1

0

· · ·
∫ tk−1

0

[
∂j1···jkf(tkx)− ∂j1···jkf(0)

]
xj1 · · ·xjkdtk · · · dt1.

The bound for Rk follows since ∂j1···jkf is uniformly continuous on compact sets. �

At this point it may be good to mention another convenient form of the Taylor expan-

sion, which we state but will not use. Let N = {0, 1, 2, · · · } be the set of natural numbers.

Then Nn consists of all n-tuples α = (α1, · · · , αn) where the αj are nonnegative integers.

Such an n-tuple is called a multi-index. We write |α| = α1 + · · ·+αn and xα = xα1
1 · · ·xαnn .

For partial derivatives, the notation

∂α =
( ∂

∂x1

)α1

· · ·
( ∂

∂xn

)αn
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will be used. We also use the notation α! = α1! · · ·αn!.

Theorem 2.3 (Taylor expansion, multi-index version). Let f ∈ Ck(U), let x0 ∈ U , and

assume that B(x0, r) ⊂ U . If x ∈ B(x0, r), then

f(x) =
∑
|α|≤k

∂αf(x0)

α!
(x− x0)α +Rk(x0;x),

where Rk satisfies similar bounds as before.

Proof. Exercise. �

2.2. Tensor fields. If f ∈ Ck(U), if x ∈ U and if v ∈ Rn is such that |v| is sufficiently

small, we write the Taylor expansion given in Theorem 2.1 in the form

f(x+ v) =
k∑
l=0

1

l!

[ n∑
j1,··· ,jl=1

∂j1···jlf(x)vj1

]
+Rk(x+ v;x).

The first few terms are

f(x+ v) = f(x) + ∂jf(x)vj +
1

2
∂jkf(x)vjvk + · · ·

Looking at the terms of various degree motivates the following definition.

Definition 2.4 (Tensor fields). An m-tensor field in U is a collection of functions u =(
uj1···jm

)n
j1,··· ,jm=1

, where each uj1···jm is in C∞(U). The tensor field u is called symmetric if

uj1···jm = ujσ(1)···jσ(m)
for any j1, · · · , jm and for any σ which is a permutation of {1, · · · ,m}.

Remark 2.5. This definition is specific to Rn, since we are deliberately not allowing any

other coordinate systems than the Cartesian one. Later on we will consider tensor fields on

manifolds, and their transformation rules under coordinate changes will be an important

feature (these will decide whether the tensor field is covariant, contravariant or mixed).

However, upon fixing a local coordinate system, all tensor fields will look essentially like

the ones defined above.

Example 2.6. (1) The 0-tensor fields in U are just the scalar functions u ∈ C∞(U)

(2) The 1-tensor fields in U are of the form u = (uj)
n
j=1, where uj ∈ C∞(U). Thus

1-tensor fields are exactly the vector fields in U ; the tensor (uj)
n
j=1 is identified

with (u1, · · · , un).

(3) The 2-tensor fields in U are of the form u =
(
uj,k
)n
j,k=1

, where ujk ∈ C∞(U). Thus

2-tensor fields can be identified with smooth matrix functions in U . The 2-tensor

field is symmetric if the matrix is symmetric.

(4) If f ∈ C∞(U), then we have for anym ≥ 0 anm-tensor field u =
(
∂j1···jmf

)n
j1,··· ,jm=1

consisting of partial derivatives of f . This tensor field is symmetric since the mixed

partial derivatives can be taken in any order.

Again by looking at the terms in the Taylor expansion, one can also think that an

m-tensor u =
(
uj1···jm

)n
j1,··· ,jm=1

acts on a vector v ∈ Rn by the formula

v 7→ uj1···jm(x)vj1 · · · vjm .
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The last expression can be interpreted as a multilinear map acting on the m-tuple of

vectors (v, · · · , v).

Definition 2.7 (Multi-linear map). If m ≥ 0, an m-linear map is any map

L : Rn × · · · × Rn → R

such that L is linear in each of its variables separately.

The following theorem is almost trivial, but for later purposes it will be good to know

that a tensor field can be thought of in two ways: either as a collection of coordinate

functions, or as a map on U that takes values in the set of multilinear maps.

Theorem 2.8 (Tensors as multilinear maps). If u =
(
uj1···jm

)n
j1,··· ,jm=1

is an m-tensor field

on U ⊂ Rn, then for any x ∈ U , there is an m-linear map u(x) defined via

u(x)(v1, · · · , vm) = uj1···jm(x)vj11 · · · vjmm , v1, · · · , vm ∈ Rn,

and it holds that uj1···jm(x) = u(x)(ej1 , · · · , ejm). Conversely, if T is a function that assigns

to each x ∈ U an m-linear map T (x), and if the function uj1···jm : x 7→ T (x)(ej1 , · · · , ejm)

are in C∞(U) for each j1, · · · , jm, then (uj1···jm) is an m-tensor field in U .

Proof. Exercise. �

2.3. Vector fields and differential forms. Let U ⊂ Rn be an open set. We wish to

consider vector

fields on U and certain operations related to vector fields.

Definition 2.9 (Vector fields). A Ck vector field in U is a map F = (F1, · · · , Fn) : U → Rn

such that all the component functions Fj are in Ck(U). The set of vector fields on U is

denoted by Ck(U,Rn).

Recall from Section 2.2 that vector fields are the same as 1-tensor fields. If u ∈ C∞(U),

the gradient of u gives rise to a vector field in U :

grad: C∞(U)→ C∞(U,Rn), grad(u) = (∂1u, · · · , ∂nu).

If F ∈ C∞(U,Rn), the divergence of F gives rise to a function in U :

div : C∞(U,Rn)→ C∞(U), div(F ) = ∂1F1 + · · ·+ ∂nFn.

The following basic identity suggests that in order to define the Laplace operator on a

space, it may be enough to have a reasonable definition of divergence and gradient.

Lemma 2.10. div ◦ grad = ∆.

Proof. div
(

grad(u)
)

= ∂1(∂1u) + · · ·+ ∂n(∂nu) = ∆u. �

We will consider further operations on vector fields in R2 and R3.

Curl in R2. Let U ⊂ R2 be open. If F ∈ C∞(U,R2), the curl of F is the function

curl(F ) := ∂1F2 − ∂2F1.

Thus curl : C∞(U,R2)→ C∞(U).
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Curl in R3. Let U ⊂ R3 be open. If F ∈ C∞(U,R3), the curl of F is the vector field

curl(F ) := ∇× F = (∂2F3 − ∂3F2, ∂3F1 − ∂1F3, ∂1F2 − ∂2F1).

Lemma 2.11. In two dimensions, one has

curl ◦ grad = 0.

In three dimensions, one has

curl ◦ grad = 0, div ◦ curl = 0.

Proof. If U ⊂ R2 and u ∈ C∞(U), we have

curl
(

grad(u)
)

= ∂1(∂2u)− ∂2

(
∂1u
)

= 0.

If U ⊂ R3 and u ∈ C∞(U), we have

curl
(

grad(u)
)

=
(
∂2∂3u− ∂3∂2u, ∂3∂1u− ∂1∂3u, ∂1∂2u− ∂2∂1u

)
= 0.

Moreover, for F ∈ C∞(U,R3) we have

div
(

curl(F )
)

= ∂1(∂2F3 − ∂3F2) + ∂2(∂3F1 − ∂1F3) + ∂3(∂1F2 − ∂2F1) = 0.

�

The previous lemma can be described in terms of two sequences: if U ⊂ R2 consider

(2.2) C∞(U)
grad→ C∞(U,R2)

curl→ C∞(U)

and if U ⊂ R3 consider

(2.3) C∞(U)
grad→ C∞(U,R3)

curl→ C∞(U,R3)
div→ C∞(U).

In both sequences, the composition of any two subsequent operators is zero. This suggests

that there may be further structure which underlies these situations and might extend

to higher dimensions. This is indeed the case, and the calculus of differential forms (or

exterior algebra) was developed to reveal this structure. We will next discuss this calculus

in a simple case.

Differential forms. The purpose will be to rewrite for instance (2.3) as a sequence

(2.4) Ω0(U)
d→ Ω1(U)

d→ Ω2(U)
d→ Ω3(U),

where Ωk(U) will be the set of differential k-forms on U ⊂ R3, and d will be a universal

operator that reduces to grad, curl, and div in the respective degrees.

Let U ⊂ Rn be open. Motivated by (2.2) and (2.3), we define

Ω0(U) := C∞(U)

and

Ω1(U) := C∞(U,Rn).

Thus Ω0(U) is the set of smooth functions in U , and any α ∈ Ω1(U) can be identified

with a vector field α = (αj)
n
j=1, where αj ∈ C∞(U). We write formally

α = (αj)
n
j=1 = αjdx

j.
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Remark 2.12. For the purposes of this section it is enough to think of dxj as a formal

object. However, the proper way to think of dxj would be as a 1-form (the exterior

derivative of the function xj : U → R), i.e. as a map that assigns to each x ∈ U the linear

map dxj|x : TxM → R that satisfies dxj|x(ek) = δjk, where {e1, · · · , en} is the standard

basis of TxM ≈ Rn.

To define Ωk(U) for k ≥ 2, first define the set of ordered k-tuples

Ik := {(i1, · · · , ik) : 1 ≤ i1 < i2 < · · · < ik ≤ n}.

If I ∈ Ik, we consider the formal object

dxI = dxi1 ∧ dxi2 ∧ · · · ∧ dxik .

Then Ωk(U) will be thought of as the set

Ωk(U) = {αIdxI : αI ∈ C∞(U)},

where the sum is over all I ∈ Ik. The number of elements in Ik is
(
n
k

)
= n!

k!(n−k)!
. We can

make the above formal definition rigorous.

Definition 2.13 (Differential form). If U ⊂ Rn, define for 0 ≤ k ≤ n

Ωk(U) := C∞
(
U,R(nk)

)
.

The elements of Ωk(U) are called differential k-forms on U , and any differential k-form

α ∈ Ωk(U) can be written as

α = (αI)I∈Ik = αIdx
I ,

where αI ∈ C∞(U) for each I.

Remark 2.14. Note that since
(
n
k

)
=
(

n
n−k

)
, the set Ωn−1(U) can be identified with the

set of vector fields on U , and Ωn(U) with C∞(U). In fact one has

Ωn−1(U) =
{ n∑

j=1

αjdx
1 ∧ · · · ∧ ˆdxj ∧ · · · ∧ dxn;αj ∈ C∞(U)

}
Ωn(U) =

{
fdx1 ∧ · · · ∧ dxn; f ∈ C∞(U)

}
,

where ˆdxj means that dxj is omitted from the wedge product.

The above definition is correct, but to keep things simple we have avoided a detailed

discussion of the wedge product ∧. To define the d operator in (2.4) properly we need

to say a little bit more. The wedge product is an associative product on elements of the

form dxI , satisfying

dxj ∧ dxk = −dxk ∧ dxj,
and more generally if J = (j1, · · · , jk) is a k-tuple, with j1, · · · , jk ∈ {1, · · · , n} (not

necessarily ordered), we should have

dxj1 ∧ · · · ∧ dxjk = (−1)Sign(σ)dxjσ(1) ∧ · · · ∧ dxjσ(k) ,

where σ is any permutation of {1, · · · , k}. This implies two conditions:
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• dxj1 ∧ · · · ∧ dxjk = 0 if (j1, · · · , jk) contains a repeated index

• dxj1 ∧ · · · ∧ dxjk can be expressed as ±dxI for a unique I ∈ Ik if (j1, · · · , jk)
contains no repeated index.

With this understanding we make the following definition.

Definition 2.15 (Exterior derivative). The exterior derivative is the map d : Ωk(U) →
Ωk+1(U) defined by

d(αIdx
I) := ∂jαIdx

j ∧ dxI .

Example 2.16. (1) If f ∈ Ω0(U) (so f ∈ C∞(U)), then df is the differential of f

written as a 1-form:

df = ∂jfdx
j.

(2) If α ∈ Ω1(U), say α = αkdx
k for some αj ∈ C∞(U), then

dα = ∂jαkdx
j ∧ dxk =

∑
1≤j<k≤n

(∂jαk − ∂kαj)dxj ∧ dxk.

(3) Any u ∈ Ωn(U) satisfies du = 0 since dxj2∧· · ·∧dxjn+1 = 0 whenever j1, · · · , jn+1 ∈
{1, · · · , n} and there will be a repeated index.

The second example above gives an n-dimensional analogue of the curl operator, as

also suggested by the following lemma:

Lemma 2.17 (The exterior derivatives in two and three dimensions). (1) Let U ⊂ R2.

If f ∈ Ω0(U), then

df = (grad(f))jdx
j.

If α = F1dx
1 + F2dx

2 ∈ Ω1(U) and F = (F1, F2), then

dα =
(

curl(F )
)
dx1 ∧ dx2.

(2) Let U ⊂ R3. If f ∈ Ω0(U), then

df =
(

grad(f)
)
j
dxj.

If α = Fjdx
j ∈ Ω1(U) and F = (F1, F2, F3), then

dα =
(

curl(F )
)
j
dxĵ,

where

dx1̂ := dx2 ∧ dx3, dx2̂ := dx3 ∧ dx1, and dx3̂ := dx1 ∧ dx2.

Finally, if u = Fjdx
ĵ ∈ Ω2(U) and F = (F1, F2, F3), then

du =
(
(div(F ))

)
dx1 ∧ dx2 ∧ dx3.

Proof. Exercise. �

Let us now verify that d ◦ d is always zero.

Lemma 2.18. d ◦ d = 0 on Ωk(U) for any k with 0 ≤ k ≤ n.
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Proof. If α = αIdx
I ∈ Ωk(U), then

dα =
n∑
k=1

∑
I∈Ik

∂kαIdx
k ∧ dxI

and

d(dα) =
n∑

j,k=1

∑
I∈Ik

∂jkαIdx
j ∧ dxk ∧ dxI .

By the properties of the wedge product, we get

d(dα) =
∑

1≤j<k≤n

∑
I∈Ik

(
∂jkαI − ∂kjαI

)
dxj ∧ dxk ∧ dxI ,

which is zero since the mixed partial derivatives are equal. �

If U ⊂ Rn is open, we therefore have a sequence

(2.5) Ω0(U)
d→ Ω1(U)

d→ · · · d→ Ωn−1(U)
d→ Ωn(U)

and the composition of any two subsequent operators is zero. This gives the desired

generalization of (2.2) and (2.3) to any dimension. In fact we have obtained much more:

as we will see during this course, differential forms turn out to be an object of central

importance in many kinds of of analysis on manifolds.

Differential forms as tensors. It will be useful to intepret differential forms as

tensor fields satisfying an extra condition.

Definition 2.19 (Alternating tensor field). An m-tensor field
(
uj1···jm

)n
j1,··· ,jm=1

in U ⊂ Rn

is called alternating if ujσ(1)···jσ(m)
= (−1)Sign(σ)uj1···jm for any j1, · · · , jm and for any σ

which is a permutation of {1, · · · ,m}.

We understand that 0-tensor fields and 1-tensor fields are always alternating. A

2-tensor field u = (ujk)
n
j,k=1 is alternating if and only if ukj = −ujk for any j, k, i.e.

the matrix (ujk) is skew-symmetric at each point. An m-tensor field u = (uj1···jm) is

alternating if and only if uj1···jm changes sign when any two indices are interchanged

(since any permutation can be expressed as the product of transpositions). Note that for

an alternating tensor, uj1···jm = 0 whenever (j1, · · · , jm) contains a repeated index.

Theorem 2.20. If U ⊂ Rn is open and 0 ≤ k ≤ n, the set Ωk(U) can be identified with

the set of alternating k-tensor fields on U .

Proof. Consider the map

T : Ωk(U)→ {alternating k-tensors}, αdxI 7→
(
α̃j1···jk

)
,

where

α̃j1···jk :=

{
0, (j1, · · · , jk) contains a repeated index,

1√
k!

(−1)Sign(σ)αI , (j1, · · · , jk) contains no repeated index.

Here, σ is the permutation of {1, · · · , k} such that I = (jσ(1), · · · , jσ(k)) is the unique

element of Ik containing the same entries as (j1, · · · , jk). The constant 1√
k!

is a harmless
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normalizing factor which will be useful later. Then α̃j1···jk is alternating by construction. It

is clear that T is injective, and surjectivity follows since any alternating tensor is uniquely

determined by the elements α̃I where I ∈ Ik. �

Cohomology. By Lemma (2.18), we observe that

u = dα for some α ∈ Ωk−1(U)⇒ du = 0.

This may be rephrased as follows:

Im
(
d|Ωk−1(U)

)
is a linear subspace of ker

(
d|Ωk(U)

)
.

We express this in one more way: if u ∈ Ck(Ω), we say that u is closed if du = 0

and that u is exact if u = dα for some α ∈ Ck−1(U). Thus, any exact differential form

is closed. The question of whether any closed form is exact depends on the topological

properties of U . To study this property we make the following definition.

Definition 2.21 (de Rham cohomology). The de Rham cohomology groups of U are

defined by

Hk
dR(U) = ker

(
d|Ωk(U)

)
/ Im

(
d|Ωk−1(U)

)
, 0 ≤ k ≤ n.

By this definition each Hk
dR(U) is in fact a (quotient) vector space, not just a group.

Any closed k-form is exact if and only if Hk
dR(U) = {0}. This happens for all k ≥ 1 at

least when U has very simple topology.

Lemma 2.22 (Poincaré lemma). If U ⊂ Rn is open and star-shaped with respect to some

x0 ∈ U (meaning that for any x ∈ U the line segment between x0 and x lies in U), then

Hk
dR(U) =

{
R, k = 0,

{0}, 1 ≤ k ≤ n.

Proof. For simplicity we only do the proof for n = 2, see [8] for the general case (which is

somewhat more involved). Assume that U is star-shaped with respect to 0. We have

H0
dR(U) = ker

(
d|Ω0(U)

)
=
{
f ∈ C∞(U), grad(f) = 0

}
.

Since U is connected and star-shaped with respect to 0, ∇f = 0 on U implies that

f ≡ f(0) is constant. Thus H0
dR(U) is one-dimensional and isomorphic to R.

We next show that H1
dR(U) = {0}, that is, for any F ∈ C∞(U,R2), we have

curl(F ) = 0⇒ F = grad(f) for some f ∈ C∞(U).

Let F = (F1, F2) satisfy ∂1F2 − ∂2F1 = 0. Then f should be some kind of integral of F ,

in fact we may just take

f(x) :=

∫ 1

0

Fj(tx)xjdt, x ∈ U.
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Since ∂1F2 = ∂2F1, we have

∂1f(x) =

∫ 1

0

[
∂1Fj(tx)txj + F1(tx)

]
dt

=

∫ 1

0

[
∂1F1(tx)tx1 + ∂2F1(tx)tx2 + F1(tx)

]
dt

=

∫ 1

0

d

dt

[
tF1(tx)

]
dt = F1(x).

Similarly, ∂2f(x) = F2(x), showing that F = grad(f).

Finally, we show that H2
dR(U) = {0}, which means that

f ∈ C∞(U)⇒ f = curl(F ) for some F ∈ C∞(U,R2).

As in the previous case, Fj should be integrals of f . We may define

F1(x) := −
∫ 1

0

f(tx)tx2dt and F2(x) :=

∫ 1

0

f(tx)tx1dx.

Then

∂1F2 − ∂2F1 =

∫ 1

0

[
∂1f(tx)t2x1 + ∂2f(tx)t2x2 + 2tf(tx)

]
dt

=

∫ 1

0

d

dt

[
t2f(tx)

]
dt = f(x).

�

We conclude by mentioning some facts about the de Rham cohomology groups (for

more details see [8]):

• The de Rham cohomology groups are topological invariants : if U and V are home-

omorphic open sets in Euclidean space, then Hk
dR(U) and Hk

dR(V ) are isomorphic

as vector spaces for each k. This gives a potential way of showing that two sets U

and V are not homeomorphic; it would be enough to check that some cohomology

groups are not isomorphic

• Note however that it is possible for non-homeomorphic spaces to have the same

cohomology groups

• In many cases (e.g. if U ⊂ Rn is a bounded open set with nice boundary), the

vector spaces Hk
dR(U) are finite dimensional. The dimension of Hk

dR(U) is a known

topological invariant, namely the k-th Betti number of U .

• Very loosely speaking, the cohomology groups may give some information about

“holes” in a set. For instance, if K1, · · · , KN are disjoint closed balls in Rn, then

Hk
dR

(
Rn\ ∪Nj Kj

)
=


R, if k = 0,

RN , if k = n− 1,

{0}, otherwise
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Later in this course we will discuss Hodge theory, which studies the cohomology groups

Hk
dR(M) where M is a compact manifold via the Laplace operator acting on differential

forms on M .

2.4. Riemannian metrics. An open set U ⊂ Rn is often thought to be “homogeneous”

(the set looks the same near every point) and “flat” (if U is considered as a subset of

Rn+1 lying in the hyperplane {xn+1 = 0}, then U has the geometry induced by the flat

hypersurface {xn+1 = 0}. In this section, we will introduce extra structure on U which

makes it“inhomogeneous”(the properties of the set vary from point to point) and“curved”

(U has some geometry that is different from the geometry induced by a flat hypersurface

{xn+1 = 0}).
Motivation. An intuitive way of introducing this extra structure is to think of U

as a medium where sound waves propagate. The properties of the medium are described

by a function c : U → R+, which is thought of as the sound speed of the medium. If

U is homogeneous, the sound speed is constant (c(x) = 1 for each x ∈ U), but if U is

inhomogeneous, then the sound speed varies from point to point.

Consider now a C1 curve γ : [0, 1] → U . The tangent vector γ̇(t) of this curve is

thought to be a vector at the point γ(t). If the sound speed is constant (c ≡ 1), the

length of the tangent vector is just the Euclidean length:∣∣∣γ̇(t)
∣∣∣
e

:=
[ n∑
j=1

γ̇j(t)2
] 1

2
.

In case of a general sound speed c : U → R+, one can think that at points where c is large

the curve moves very quickly and consequently has short length. Thus we may define the

length of γ̇(t) with respect to the sound speed c by∣∣∣γ̇(t)
∣∣∣
c

:=
1

c(γ(t))

[ n∑
j=1

γ̇j(t)2
] 1

2
.

It is useful to generalize the above setup in two directions. First, in addition to

measuring lengths of tangent vectors we would also like to measure angles between tangent

vectors (in particular we want to know when two tangent vectors are orthogonal). Second,

if the sound speed is a scalar function on U , then the length of a tangent vector is

independent of its direction (the medium is isotropic). We wish to allow the medium to

be anisotropic, which will mean that the sound speed may depend on direction and should

be a matrix valued function.

In order to measures lengths and angles of tangent vectors, it is enough to introduce

an inner product on the space of tangent vectors at each point. The tangent space is

defined as follows:

Definition 2.23 (Tangent space). If U ⊂ Rn is open and x ∈ U , the tangent space at x

is defined as

TxU := {x} × Rn.
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The tangent bundle of U is the set

TU :=
⋃
x∈U

TxU.

Of course, each TxU can be identified with Rn (and we will often do so), and a vector

v ∈ TxU is written in terms of its coordinates as v = (v1, · · · , vn). Now if 〈·, ·〉 is any

inner product on Rn, there is some positive definite symmetric matrix A = (ajk)
n
j,k=1 such

that

〈v, w〉 = Av · w, v, w ∈ Rn.

(The proof is left as an exercise, hint: take ajk = 〈ej, ek〉) The next definition introduces

an inner product on the space of tangent vectors at each point:

Definition 2.24 (Riemannian metric). A Riemannian metric on U is a matrix-valued

function g = (gjk)
n
j,k=1 such that each gjk is in C∞(U), and (gjk(x)) is a positive definite

symmetric matrix for each x ∈ U . The corresponding inner product on TxU is defined by

〈v, w〉g := gjk(x)vjwk, v, w ∈ TxU.

The length of a tangent vector is

|v|g := 〈v, v〉1/2g = (gjk(x)vjvk)1/2, v ∈ TxU.

The angle between two tangent vectors v, w ∈ TxU is the number θg(v, w) ∈ [0, π] defined

by

cos θg(v, w) =
〈v, w〉g
|v|g|w|g

.

We will often drop the subscript and write 〈·, ·〉 or | · | if the metric g is fixed. To

connect the above definition to the discussion about sound speeds, a scalar sound speed

c(x) corresponds to the Riemannian metric

gjk(x) =
1

c(x)2
δjk.

Finally, we introduce some notation that will be very useful.

Notation. If g = (gjk) is a Riemannian metric on U , we write

(gjk)nj,k=1 = g−1

for the inverse matrix of (gjk)
n
j,k=1, and

|g| = det(g)

for the determinant of the matrix (gjk)
n
j,k=1. In particular, we note that gjkg

kl = δlj for

any j, l = 1, · · · , n.

2.5. Geodesics. Lengths of curves. Consider an open set U that is equipped with a

Riemannian metric g. As we saw above, one can measure lengths of tangent vectors with

respect to g, and this makes it possible to measure lengths of curves as well.

Definition 2.25 (Regular curve and its length). A smooth map γ : [a, b] → U whose

tangent vector γ̇(t) is always nonzero is called a regular curve. The length of γ is defined
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by

L(γ) :=

∫ b

a

|γ̇(t)|dt.

The length of a piecewise regular curve is defined as the sum of lengths of the regular

parts.

The Riemannian distance between two points p, q ∈ U is defined by

d(p, q) := inf
{
L(γ); γ : [a, b]→ U is piecewise regular with γ(a) = p and γ(b) = q

}
.

Fact. L(γ) is independent of the way the curve γ is parametrized, and that we may

always parametrize γ by arc-length so that |γ̇(t)| = 1 for all t. (Proof is left as an exercise)

The previous exercise shows that we can always reparametrize a piecewise regular

curve γ by arc length, so that one will have |γ̇(t)| = 1 for all t. A curve satisfying

|γ̇(t)| ≡ 1 is called a unit speed curve (similarly a curve satisfying |γ̇(t)| ≡constant is

called a constant speed curve).

Geodesic equation. We now wish to show that any length minimizing curve satisfies

a certain ordinary differential equation.

Theorem 2.26 (Length minimizing curves are geodesics). Suppose U ⊂ Rn is open, let

g be a Riemannian metric on U , and let γ : [a, b] → U be a piecewise regular unit speed

curve. Assume that γ minimizes the distance between its endpoints, in the sense that

L(γ) ≤ L(η)

for any piecewise regular curve η from γ(a) to γ(b). Then γ is a regular curve, and it

satisfies the geodesic equation

(2.6)
..
γ
l
(t) + Γljk

(
γ(t)

)
γ̇j(t)γ̇k(t) = 0, 1 ≤ l ≤ n,

where Γljk are the Christoffel symbols of the metric g:

Γljk :=
1

2
glm
(
∂jgkm + ∂kgjm − ∂mgjk

)
, 1 ≤ j, k, l ≤ n.

Example 2.27. If g is the Euclidean metric on U , so that gjk(x) = δjk, then all the

Christoffel symbols Γljk are zero. The geodesic equation becomes just

..
γ
l
(t) = 0, 1 ≤ l ≤ n.

Solving this equation shows that

γ(t) = tv + w

for some vectors v, w ∈ Rn. Thus Theorem 2.26 recovers the classical fact that any length

minimizing curve in Euclidean space is a line segment.

Any smooth curve that satisfies the geodesic equation (2.6) is called a geodesic, and

the conclusion of Theorem 2.26 can be rephrased so that any length minimizing curve is

a geodesic. The fact that length minimizing curves satisfy the geodesic equation gives

powerful tools for studying these curves. For instance, one can show that

• any geodesic has constant speed and is therefore regular
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• given any x ∈ U and v ∈ TxU , there is a unique geodesic starting at point x in

direction v

• any geodesic minimizes length at least locally (but not always globally)

• a set U with Riemannian metric g is geodesically complete, meaning that every

geodesic is defined for all t ∈ R, if and only if the metric space (U, dg) is complete

(this is the Hopf-Rinow theorem).

Variations of curves. Let γ : [a, b] → U be a piecewise regular length minimizing

curve. We will prove Theorem 2.26 by considering families of curves (γs) where s ∈ (−ε, ε)
and γ0 = γ, and all curves γs start at γ(a) and end at γ(b). Such a family is called a

variation (or a fixed-endpoint variation) of γ. By the length minimizing property,

L(γ0) ≤ L(γs) for s ∈ (−ε, ε),

so if the dependence on s is at least C1 we obtain that d
ds
L(γs)|s=0 = 0. This fact, applied

to many different families γs, will imply that γ is smooth and solves the geodesic equation.

If (γs) is a family of curves with γ0 = γ, we think of V (t) := ∂
∂s
γs(t)|s=0 as the

“infinitesimal variation” of the curve γ that leads to the family (γs). The vector V (t)

should be thought of as an element of Tγ(t)U . The next result shows that one can reverse

this process, and obtain a variation of γ from any given infinitesimal variation V .

In this result and below, we assume that the piecewise regular curve γ is fixed and

that there is a subdivision of [a, b],

a = t0 < t1 < · · · < tN < tN+1 = b,

such that the curves γ|(tj ,tj+1) is regular for each j with 0 ≤ j ≤ N .

Lemma 2.28 (Variations of curves). If V : [a, b] → Rn is a continuous map such that

V |(tj ,tj+1) is C∞ for each j and V (a) = V (b) = 0, then there exists ε > 0 and a continuous

map

Γ: (−ε, ε)× [a, b]→ U

such that the curves γs : [a, b]→ U , γs(t) := Γ(s, t) satisfying the following

• each γs is a piecewise regular curve with endpoints γ(a) and γ(b), and γs|(tj ,tj+1)

is regular for each j,

• γ0 = γ,

• s 7→ γs(t) is C∞ and d
ds
γs(t)|s=0 = V (t) for each t ∈ [a, b].

Proof. Define

Γ: (−ε, ε)× [a, b]→ U, Γ(s, t) := γ(t) + sV (t),

where ε is so small that Γ takes values in U . The properties follow immediately from the

definition. �

We can now compute the derivative d
ds
L(γs)|s=0 that was mentioned above. In classical

terminology, this is called the first variation of the length functional.
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Lemma 2.29 (First variation formula). Let γ be a piecewise regular unit speed curve,

and let (γs) be a variation of γ associated with V as in Lemma 2.28. Then

d

ds
L(γs)|s=0 = −

N∑
j=0

∫ tj+1

tj

〈Dtγ̇(t), V (t)〉dt−
N∑
j=1

〈∆γ̇(tj), V (tj)〉,

where Dtγ̇(t) is the element of Tγ(t)U defined by(
Dtγ̇(t)

)l
:=

..
γ
l
(t) + Γljk

(
γ(t)

)
γ̇j(t)γ̇k(t), 1 ≤ l ≤ n,

and ∆γ̇(tj) := γ̇(tj+)− γ̇(tj−) is the jump of γ̇(t) at tj.

Remark 2.30. We will later give an invariant meaning to Dtγ̇(t) and interpret it as the

covariant derivative of γ̇(t) along the curve γ. However, at this point it is enough to

think of Dtγ̇(t) just as some expression that comes out when we compute the derivative
d
ds
L(γs)|s=0.

Proof. Define

I(s) := L(γs) =
N∑
j=0

∫ tj+1

tj

[
gpq
(
γs(t)

)
γ̇ps (t)γ̇

q
s(t)
] 1

2
dt.

To prepare for computing the derivative I ′(0), define two vector fields

T (t) := ∂tγs(t)|s=0 = γ̇(t), V (t) := ∂sγs(t)|s=0.

Since |γ̇0(t)| = |T (t)| ≡ 1 and (gjk) is symmetric, we have

I ′(0) =
1

2

N∑
j=0

∫ tj+1

tj

(
∂rgpq(γ(t))V r(t)T p(t)T q(t) + 2gpq(γ(t))V̇ p(t)T q(t)

)
dt.

Integrating by parts in the last term, this shows that

I ′(0) =
N∑
j=0

∫ tj+1

tj

[1

2
∂rgpq(γ)T pT q − ∂mgrq(γ)Ṫ q

]
V rdt

+
N∑
j=0

[
〈V (tj+1), T (tj+1)〉 − 〈V (tj), T (tj)〉

]
.

Using that V (t0) = V (tN+1) = 0 and that V is continuous, the boundary term becomes

−
∑N

j=1〈∆γ̇(tj), V (tj)〉 as required. For the integrals, we use that

∂mgrq(γ)TmT q =
1

2

(
∂mgrq(γ) + ∂qgrm(γ)

)
TmT q,

which gives

−〈Dtγ̇(t), V (t)〉 = −grq(γ)
(
Ṫ q + ΓqjkT

jT k
)
V r

= −grq(γ)
(
Ṫ q − 1

2

[
∂jgkr + ∂kgjr − ∂rgjk

]
T jT k

)
V r

= −grq(γ)
(
Ṫ q +

1

2
∂rgpqT

pT q − ∂mgrqTmT q
)
V r.
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This completes the proof. �

Proof of Theorem 2.26. Let γ : [a, b] → U be a piecewise regular unit speed curve that

minimizes the length between its endpoints. If V is any vector field as in Lemma 2.28 and

(γs) is the corresponding variation of γ, we must have

L(γ0) ≤ L(γs)

for s ∈ (−ε, ε). Therefore, d
ds
L(γs)|s=0 = 0. The first variation formula, Lemma 2.29,

then shows that

(2.7)
N∑
j=0

∫ tj+1

tj

〈Dtγ̇(t), V (t)〉dt+
N∑
j=1

〈∆γ̇(tj), V (tj)〉 = 0

for any such V .

We first show that γ solves the geodesic equation on each interval (tj, tj+1). Fix

j ∈ {0, · · · , N} and choose V such that

V (t) := ϕ(t)Dtϕ̇(t),

where ϕ is any function in C∞0
(
(tj, tj+1)

)
. This V is an an admissible choice in Lemma

2.29 and (2.7) implies that �

The previous proof shows actually more than stated in the theorem. We say that a

piecewise regular curve γ is a critical point of the length functional L if d
ds
L(γs)|s=0 = 0

for any fixed-endpoint variation of γ as in Lemma 2.28.

Theorem 2.31. The critical points of L are exactly the geodesic curves.
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