Exercise Two

1. Prove Lemma 2.17, properties about exterior derivatives in two and three dimensions.
2. Suppose B_{1} and B_{2} are two concentric balls in \mathbb{R}^{n} with $\overline{B_{1}} \subset B_{2}$. Show that there exists a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

- $0 \leq f \leq 1$
- $f \equiv 1$ on B_{1} and $f=0$ outside B_{2}.

Solution: see Chern Page 26, Lemma 1
3. Suppose U and V are two nonempty open sets in \mathbb{R}^{n} and \bar{V} is compact with $\bar{V} \subset U$. Show that there exists a smooth function $f: \mathbb{R}^{n} \rightarrow \mathbb{R}$ such that

- $0 \leq f \leq 1$
- $f \equiv 1$ on V and $f=0$ outside U.

Solution: see Chern Page 26, Lemma 2
4. Consider the function $f: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ defined by

$$
f(x, y)=\left(f_{1}(x, y), f_{2}(x, y)\right):=\left(\frac{-y}{x^{2}+y^{2}}, \frac{x}{x^{2}+y^{2}}\right) .
$$

Show that $\frac{\partial f_{1}}{\partial y}=\frac{\partial f_{2}}{\partial x}$. Is there any smooth function $F: \mathbb{R}^{2} \backslash\{0\} \rightarrow \mathbb{R}$ such that

$$
\frac{\partial F}{\partial x}=f_{1} \quad \text { and } \quad \frac{\partial F}{\partial y}=f_{2} ?
$$

Solution: see MT Page 1, Example 1.2
5^{*}. Prove the Poincaré Lemma 2.22 for $n=3$.
Solution: see MT Page 23, Theorem 3.15

