Recap of Week 2

Pamela Delgado
February 27, 2019

(slides Willy Zwaenepoel)

Key Concepts

Process

Linux primitives and process tree
Multiprocessing and its benefits
Process switch

Process scheduler

Key Concepts

Process

— Program in execution

Linux primitives and process tree
Multiprocessing and its benefits
Process switch

Process scheduler

Key Concepts

Process

Linux primitives and process tree
— fork() / exec() / wait() / exit()
— Use in shell

Multiprocessing and its benefits
Process switch
Process scheduler

Key Concepts

Process
Linux primitives and process tree

Multiprocessing and its benefits
— Switching the CPU to another process on I/O
— Lower response time and better utilization

Process switch
Process scheduler

Key Concepts

Process
Linux primitives and process tree
Multiprocessing and its benefits

Process switch
— Change of process using the CPU
— Save and restore registers and other info

Process scheduler

Key Concepts

Process

Linux primitives and process tree
Multiprocessing and its benefits
Process switch

Process scheduler

— Decides which process to run next

Scheduler Implementation

Must be very efficient

Runs (at least) every A

If A =10 msec, scheduler run takes 1 msec
10% of your machine is gone!

Be careful with large number of processes

Week 3 —Part 1
Application Multiprocess Structuring
and Interprocess Communication

Pamela Delgado
March 6, 2019

(slides Willy Zwaenepoel)

So far

* One program

— ... stack

= ohe process
* Examples: globals
— Compiler

registers

PC

This is not always the case

* One program

=

= multiple processes
code

 Example:
— Web server globals

heap

stack

registers

(Very Simple) Web Server

WebServerProcess {
forever {
wait for an incoming request
read file from disk
send file back in response

Single-Process Web Server

Example: Web server receives two requests in quick succession

Arrival 1 urz
rl rl r2 r2

CPU
rl r2

Disk

time

Multiprocess Web Server

ListenerProcess {
forever {
wait for incoming request
CreateProcess(worker, request)

}
}

WorkerProcess(request) {
read file from disk
send response
exit

Multi vs. Single-process Web Server

Example: Web server receives two requests in quick succession

Arrival 1 llrz
rl

rl r2 r2
CPU
_ rl r2
Disk
Arrival rl llfz time
rl p) rl
CPU r 2
rl
Disk 2

time

Multiprocess Web Server

Each Worker is a Process

code

globals

stack

(o
_gobol
_ hew
—_—

registers

PC

Amount of work on server per request

* Receive network packet
* Run listener process

* Create worker process

* Read file from disk

* Send network packet

Amount of work on server per request

Receive network packet

Run listener process

Create worker process is expensive
Read file from disk

Send network packet

Process Pool

* Create worker processes during initialization
* Hand incoming request to them

Multiprocess Web Server with Process Pool

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
wait for incoming request
send(request, process[?])

}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

Pictures remain the same

Pictures remain the same

code

globals

stack

(o
_gobol
_ hew
—_—

registers

PC

What changed:
Amount of work on server per request

* Receive network packet

* Run listener process

* Send message to worker process (cheaper)
* Read file from disk

* Send network packet

Interprocess Communication

Key Concepts

* Message passing
 Remote procedure call

Where do you need IPC?

Multiprocess Web Server with Process Pool

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
receive incoming request
send(request, process[?])

}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

Multiprocess Web Server with Process Pool
Client-Server Communication

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
receive incoming request
send(request, process[?])

}
}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

}
}

More Client-Server Communication:
Access to System Processes

daemonl

user

kernel

Multiprocess Web Server with Process Pool

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
wait for incoming request
send(request, process[?])

}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

Multiprocess Web Server with Process Pool
Communication Cooperating Processes

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
wait for incoming request
send(request, process[?])

}
}

WorkerProcess[?] {
forever {
wait for message(request)
read file from disk
send response

}
}

Where do you need IPC?

e Between client and server
 Between cooperating processes

Message Passing Primitives

* Send message
* Recelve message

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing Send / Receive

msg = alloc() msg = alloc()
msg->fieldo = 1 Receive(msg)
a = msg->fieldo

Send(msg, ..)

Message Passing

* By value communication
* Never by reference
* Receiver cannot affect message in sender

Message Passing Implementation

pid

user

kernel

Message Passing Implementation

pid

user

kernel

Message Passing Implementation

pid

ecelve

user

kernel

Message Passing Alternatives

* Symmetric / asymmetric addressing
* Blocking / non-blocking

Symmetric Addressing

Send(msg, topid)
Receive(msg, frompid)

Message is (typically) a struct

topid, frompid are process identifiers

Symmetric addressing seldom used

Asymmetric Addressing

e Send(msg, pid)
— Send msg to process pid
* pid = Receive(msg)
— Receive msg from any process
— Return the pid of sending process

* More common and useful form of addressing

Blocking or Non-blocking Send

* Non-blocking:
— Send returns immediately after message is sent

* Blocking

— Sender blocks until message is delivered

* Non-blocking is the more common form

Blocking or Non-blocking Receive

* Non-blocking
— Receive returns immediately
— Regardless of message present or not

* Blocking

— Receive blocks until message is present

* Blocking is the more common form

(Slightly Rewritten) Example:
Multiprocess Web Server with Process Pool

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
client _pid = receive(msg)
msg’ = slightly modify msg to include client pid
send(msg’, worker process[i])
}
}

WorkerProcess[i] {
forever {
receive(msg)
read file from disk
send(resp, client pid)

}
}

Asymmetric Addressing: Send

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
client pid = receive(msg)
msg’ = slightly modify msg to include client pid
send(msg’, worker_ process[i])

}

WorkerProcess[1i] {
forever {
receive(msg)
read file from disk
send(resp, client pid)

Asymmetric Addressing: Receive

ListenerProcess {
for(i=0; i<MAX_ PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
client _pid = receive(msg) //receive msg from any client
msg’ = slightly modify msg to include client pid
send(msg’, worker process[i])

}

WorkerProcess[i] {
forever {
receive(msg’) //receive msg’ from listener; could be symmetric
read file from disk
send(resp, client pid)

Blocking Receive

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
client pid = receive(msg) // nothing else to do
msg’ = slightly modify msg to include client pid
send(msg’, worker process[i])

}

WorkerProcess[i] {
forever {
receive(msg) // nothing else to do
read file from disk
send(resp, client pid)

Non-blocking Send

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
client _pid = receive(msg)
msg’ = slightly modify msg to include client pid
send(msg’, worker _process[i]) // must not block

}

WorkerProcess[i] {
forever {
receive(msg)
read file from disk
send(resp, client pid) // must not block

Returning to (Server-Side)
Client-Server Communication

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
receive incoming request
send(request, process[?])

}
}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

}
}

(Client-Side) Client-Server Communication

send(msg to server)

receive(reply msg from server)

A Very Common Pattern

* Client:
— Send
— Blocking receive

e Server

— Blocking receive
— Send

/* send request to server */
/* wait for reply */

/* wait for request */
/* send reply */

This looks like ...

* Client: calling site
— Send call procedure
— Blocking receive return
e Server callee site
— Blocking receive invoke procedure

— Send return

Remote Procedure Call (RPC)

* Client:
— Send
— Blocking receive

e Server

— Blocking receive
— Send

RPC Interface

* |Interface
— List of remotely callable procedures
— With their arguments and return values

 Example: file system interface

— Open(string filename) returns int fd

RPC Client Code

* Import file system interface

 fd = open(“/a/b/c”)
* nbytes = read(fd, buffer, size)

RPC Server Code

Export file system interface

int Open(stringname) { ... }
int Read(fd, buffer, nbytes) { ... }

Problem

 Want a procedure call interface
* Have only message passing between processes
* How to bridge the gap?

Solution: Stub Library

* Client stub and server stub
* Client stub linked with client process
e Server stub linked with server process

Two Message Types

e Call message
— From client to server
— Contains arguments
* Return message

— From server to client
— Contains return values

Client Stub

e Sends arguments in call message

* Receives return values in return message

Server Stub

* Receives arguments in call message
* |[nvokes procedure
e Sends return values in return message

RPC Implementation

client
process

server
process

client
code

server
code

Client and Server Stubs

client
process

server
process

client
stub

server
stub

client server
code code

RPC Implementation: Call

client
process

client
code

server
process

client
stub

server
stub

server
code

user

s s R SR e e e e e e e e e e e e - —

kernel

RPC Implementation: Call

client

1
: server
process : process
|
client : server
|
oroc < code : code
call . '
client : server
stub : stub
user :
1

kernel

RPC Implementation: Call

client
stub

server
stub

client server
Process process
client server
proc code code
) < -

user

kernel Send "

s s R SR e e e e e e e e e e e e - —

RPC Implementation: Call

client

1
: server
process : process
|
client : server
|
oroc < code : code
call . '
client : server
stub : stub
user :
l E—

W

kernel Send l

B

RPC Implementation: Call

client
stub

server
stub

client server
Process process
client server
proc code code
) < -

user

kernel Send "

s s R SR e e e e e e e e e e e e - —

¥

Receive

RPC Implementation: Call

client server
Process process
client server
oroc code code oroc
call <

client
stub

: call
server
stub

¥

user

kernel Send "

s s R SR e e e e e e e e e e e e - —

Receive

RPC Implementation: Return

client
code

client
process

server
process

client
stub

server
stub

server
code

user

s s R SR e e e e e e e e e e e e - —

kernel

RPC Implementation: Return

client
process

client
code

server
process

server
code D oroc
return
server
stub

client
stub

user

s s R SR e e e e e e e e e e e e - —

kernel

RPC Implementation: Return

client

1
: server
process : process
|
client : server
|
code : code - oroc
. : return
client , server
stub : stub
user :
' v
kernel Send

RPC Implementation: Return

client

1
: server
process : process
|
client : server
|
code : code - oroc
. : return
client , server
stub : stub
user :
' v
kernel Send

return
message

s

RPC Implementation: Return

client

1
: server
process : process
|
client : server
|
code code
: D proc
. : return
client , server
stub : stub
user :
| v
kernel f Receive Send

RPC Implementation: Return

client

1
: server
process : process
|
client : server
|
oroc code | code proc
|
return c . : > return
client , server
stub : stub
user :
| v
kernel f Receive Send

An Example

e Timeserver

e Supports GetTime() and SetTime()

Interface

long GetTime()
boolean SetTime(long time)

Server Code

GetTime() {

return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

Client Code

main() {
time = GetTime()

SetTime(time + 100)
}

Message Format

* We already saw:

— Call message contains arguments

* Must also include which procedure is called

Message Format

Call Message Return Message

procno retvalQ

arg0

Client Stub

GetTime(){
msg->procno = 1
Send(msg)

Receive(msg)
return(msg->retvalo)

}

SetTime(long time){
msg->procno = 2
msg->argd = time
Send(msg)

Receive(msg)
return(msg->retvalo)

Server Stub

while(true) do {
Receive(msg)
switch msg->procno {
case 1: {
time = GetTime()
msg->retvalo = time

Send(msg)
}
case 2: {
ret = SetTime(msg->argd)
msg->retvalo = ret
Send(msg)
}

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

client code

client stub

main() {
time = GetTime()
SetTime(time + 100)

}

GetTime() {
msg->procno =1
Send(msg)

Receive(msg)
return(msg->retvalO)

}

SetTime(long time) {
msg->procno = 2
msg->arg0 = time
Send(msg)

Receive(msg)
return(msg->retvalO)

GetTime() {
return(ReadHardwareClock())

}
SetTime(time) {

WriteHardwareClock(time)
return(1)

}

while(true) do {
Receive(msg)
switch msg->procno {
case 1: { time = GetTime()
msg->retval0 = time
Send(msg) }
case 2: { ret = SetTime(msg->arg0)
msg->retvalO = ret
Send(msg) }

9P0J J9AISS

qn1s J9AJSS

Note: Stubs Generated Automatically

interface

stub B server
compiler stub

Week 3 — Part 2
Application Multithreading
and Synchronization

Pamela Delgado
March 6, 2019

(slides Willy Zwaenepoel)

Key Concepts

* Multithreading vs. multiprocessing
* Synchronization
* Pthreads examples

Multiprocess Web Server with Process Pool

ListenerProcess {
for(i=0; i<MAX_PROCESSES; i++)
process[i] = CreateProcess(worker)
forever {
wait for incoming request
send(request, process[?])

}

WorkerProcess[?] {
forever {
wait for message(&request)
read file from disk
send response

Still a Performance Problem

* Disk access is expensive

Multiprocess Web Server with Cache

ListenerProcess {
for (i=0; i<MAXPROCESS; i++)
process[i] = CreateProcess()
forever {
wait for incoming request
send(request, process[?])

}

WorkerProcess[?] {
forever {
wait for message(request)
if(requested file is not in cache) {
read file from disk
put file in cache

}

send response

Now there is a different problem (1)

Incoming request for file A
Listener sends request to workerl
Worker1 reads file A from disk
Workerl puts file A in its memory

Now there is a different problem (2)

‘= 2

code

globals

A heap

stack

registers

PC

workerl

Now there is a different problem (3)

* Another incoming request for file A
* Listener sends request to worker?2

Now there is a different problem (4)

‘= 2

code

globals

A heap

stack

‘= 2\

code

globals

heap

stack

registers

PC

workerl

registers

PC

worker2

Now there is a different problem (3)

Another incoming request for file A
Listener sends request to worker2

Worker?2 reads file A from disk
Worker2 puts file A in its memory

Now there is a different problem (4)

‘= 2

code

globals

A heap

stack

‘= 2\

code

globals

A Fheap

stack

registers

PC

workerl

registers

PC

worker2

What is the Problem?

 Workerl and Worker2 do not share memory
e Effectiveness of cache is much reduced

What is the Solution?

* Make Workerl and Worker2 share memory
* This is multithreading

Multithreading

A thread is just like a process
But it does NOT have its own heap and globals

Has its own PC, registers, stack

Shares heap and globals with other threads in
the same process

Two Processes

code

globals

heap

stack

e
gkl
 bew
—_—

code

globals
heap

stack

llll\
%

registers

PC

registers

PC

Two Threads in a Process

~

registers

PC

code

globals
heap

o

registers

PC

More Complex Example

Processl Process?2 Process3

code /// \\\ code

globals globals

code

Ill\
4

globals

heap heap

heap

stl st2

stack

4

registers

PC

Threadl Threadl Thread2 Thread3 Threadl Thread?2

Multithreaded Web Server with Cache

ListenerThread {
for (i=0; i<MAXTHREADS; i++)
thread[i] = CreateThread()
forever {
wait for incoming request
send(request, thread[?])

}

}

WorkerThread[?] {
forever {

wait for message(request)

if(requested file is not in cache) {
read file from disk
put file in cache

}

send response

Problem Solved (1)

Incoming request for file A
Listener sends request to workerl
Worker1 reads file A from disk
Workerl puts file A in memory

Problem Solved (2)

~

stack

code

globals
A heap

registers

PC

workerl

stack
registers

PC

worker2

o

Problem Solved (3)

Another incoming request for file A
Listener sends request to worker2
Worker?2 finds file A in cache
Responds with file from cache

Problem Solved (4)

~

stack

code

globals
A heap

registers

PC

workerl

stack
registers

PC

worker2

o

In General

* Processes provide separation
— In particular, memory separation (no shared data)
— Suitable for coarse-grain interaction

* Threads do not

— In particular, share memory (shared data)
— Suitable for tighter integration

Shared Data

* Advantage:

— Many threads can read/write it

* Disadvantage:

— Many threads can read/write it
— Can lead to data races

Data Race

* Unexpected/unwanted access to shared data

Data Race Example

* Unexpected/unwanted access to shared data

Thread 1:
i = my_value; .. ; array[i] = ..

Thread 2:
i = other_value

Interleaving:
i = my_value; .. ; 1 = other_value; .. ; array[i] =

Data Race

Unexpected/unwanted access to shared data
Result of interleaving of thread executions

Program must be correct for all interleavings

Application Multithreading

You studied this already in Concurrency
Repeating basic principles

Show structured approach

Use Pthreads

Note:

— Showing essentials
— Not necessarily working Pthreads code

Basic Approach to Multithreading

Divide “work” among multiple threads

Which data is shared?

— Globals and heap
— Not locals
— Not read-only

Where is shared data accessed?

Put shared data access in critical section
— Only one process at a time can access it

Why this (mostly) works

* Trouble with multithreaded execution:
— Data races
— Data changed by another thread

e Critical section:

— No other thread can change data

e So you are (mostly) ok

Data Race Example

* Unexpected/unwanted access to shared data

Thread 1:
critical section { i = my_value; .. ; array[i] = ..

¥

Thread 2:
critical section { 1

Interleaving: x
i = my_value; .. ; 1 = other _value; .. ; array[i] =

other_value }

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)

— Create thread

— Return threadid

— Run threadcode

— With argument arg

* Pthread exit(status)
* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

— Terminate thread
— Optionally return status

* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

* Pthread join(threadid, &status)
— Wait for thread threadid to exit
— Receive status, if any

Example: Fork-Join Parallelism

* Main thread
— Creates number of worker threads
— Waits for them to finish

* Worker threads

— Do work more or less independently
— EXit

Simple Pthreads Example

#include <pthreads.h>
#define NUM_THREADS 5

int main(void) {
pthread t threads[NUM_THREADS];
int thread_args[NUM_THREADS];
int rc, 1i;

/* create all threads */
for (i=0; i<NUM_THREADS; ++i) {

thread_args[i] = 1i;

pthread create(&threads[i], ThreadCode, (void *) &thread _args[i]);
}

/* wait for all threads to complete */
for (i=0; i<NUM_THREADS; ++i) {
pthread join(threads[i], NULL);

}
exit(0);

Simple Pthreads Example

#include <pthreads.h>
#define NUM_THREADS 5

int main(void) {
pthread t threads[NUM THREADS];
int thread_args[NUM_THREADS];
int rc, 1i;

/* create all threads */
for (i=0; i<NUM_THREADS; ++i) {

thread args[i] = 1i;

pthread create(&threads[i], ThreadCode, (void *) &thread args[i]);
}

/* wait for all threads to complete */
for (i=0; i<NUM_THREADS; ++i) {
pthread join(threads[i], NULL);

}
exit(9);

Simple Pthreads Example

#include <pthreads.h>
#define NUM_THREADS 5

int main(void) {
pthread t threads[NUM THREADS];
int thread_args[NUM_THREADS];
int rc, 1i;

/* create all threads */
for (i=0; i<NUM_THREADS; ++i) {

thread args[i] = 1i;

pthread create(&threads[i], ThreadCode, (void *) &thread args[i]);
}

/* wait for all threads to complete */
for (i=0; i<NUM_THREADS; ++i) {
pthread join(threads[i], NULL);

}
exit(9);

Simple Pthreads Example

void *ThreadCode(void *argument) {
int tid;
tid = *((int *) argument);
printf("Hello World! It's me, thread %d!\n", tid);

/* optionally: insert more useful stuff here */
return NULL;

Pthreads: Locks

 Pthread mutex_lock(mutex)
 Pthread mutex_unlock(mutex)

Pthreads: Locks

 Pthread mutex_lock(mutex)
— If mutex is held, block
— If mutex is not held

* Acquire mutex
* Proceed

* Pthread _mutex_unlock(mutex)

Pthreads: Locks

 Pthread mutex_lock(mutex)
 Pthread mutex_unlock(mutex)

— Release mutex

Example: Single-Threaded Code

main() {
int 1
int sum = @, prod =1
for(i=0; i<MAX; i++) {
c = a[i] * b[i]
sum += C
prod *= ¢
}
}

Basic Approach to Multithreading

Divide “work” among multiple threads

Which data is shared?

— Globals and heap
— Not locals
— Not read-only

Where is shared data accessed?
Define one mutex
Put lock/unlock around each shared access

Example: Divide Work

main()
int 1
int sum= @, prod =1
for(i=0; i<MAX_THREADS; i++) { Pthread create(..) }
for(i=0; i<MAX_THREADS; i++) { Pthread _join(..) }
printf(sum)
printf(prod)

}

Threadcode() {
int 1, c
for(i=my min; i<my max; i++) {
c = a[i] * b[i]
sum += C
prod *=c

Example: Shared Data

Shared data

— Sum

— prod

Shared read-only data
* af], b[]
Local data

— i (loop index), c

mutex on access to sum and prod

Example: Synchronization

Threadcode() {

int i

for(i=my _min; i<my max; i++) {
c = a[i] * b[1i]
Pthread mutex_ lock(biglock)
sum += C
prod *= c
Pthread mutex _unlock(biglock)

Why it will not work very well

* Single lock inhibits parallelism

* Two approaches:
— Fine-grain locking:
e Multiple locks on individual pieces of shared data

— Privatization:
* Make shared data accesses into private data accesses

Example: Finer-Grain Locking

Threadcode() {

int i, c

for(i=my _min; i<my max; i++) {
c = a[i] * b[i]
Pthread mutex_lock(sumlock)
sum += C
Pthread _mutex_unlock(sumlock)
Pthread mutex_lock(prodlock)
prod *= ¢
Pthread mutex_unlock(prodlock)

Caveat

* When using fine-grain locking
* Or, when using multiple locks

 Be careful with deadlocks

Example: Privatization

e Define for each thread

— A local variable representing its sum

— A local variable representing its product

* Use those for accesses in the loop
— Become local accesses
— No need for lock

* Only access shared data after the loop
— Use lock there

Example: Privatization

Threadcode() {
int i, c
local sum = ©
local prod =1

for(i=my min; i<my max; i++) {
c = a[i] * b[1i]
local sum += ¢
local prod *= ¢

}

Pthread mutex_ lock(sumlock)
sum += local sum

Pthread _mutex_unlock(sumlock)
Pthread mutex_ lock(prodlock)
prod *= local prod

Pthread mutex_unlock(prodlock)

Another Example:
Multithreaded Web Server

ListenerThread {
forever {
Receive(request)
Pthread create(..)

}
}

WorkerThread(request) {
read file from disk
Send(response)
Pthread exit()

}

Shared Data?

e Thereis none!

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) { Pthread_create(..) }
forever {
Receive(request)
hand request to thread[?]

}
}
WorkerThread[?] {
forever {
wait for available request
read file from disk
Send(reply)
}

}

Shared Data?

 \We need to create shared data
* Going to be some kind of a queue
* Put lock/unlock around it

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
Pthread mutex unlock(queuelock)

}

WorkerThread {
forever {
Pthread mutex lock(queuelock)
take request out of queue
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)

It will not work (at all)

* Not fork-join parallelism

* You need to tell worker(s) there is something
for them to do (i.e., in the queue)

* Sometimes called task parallelism

Pthreads: Condition Variables

Pthread cond_wait(cond, mutex)
Pthread cond_signal(cond, mutex)

Pthread cond_broadcast(cond, mutex)

Pt
Pt
Pt

Pthreads: Condition Variables

Nreac
Nreac

Nreac

_conc

_conc

_conc

_wait(cond, mutex)
_signal(cond, mutex)
_broadcast(cond, mutex)

Must hold mutex when calling any of these!

Pthreads: Condition Variables

 Pthread _cond_ wait(cond, mutex)
— Wait for a signal on cond
— Release mutex

* Pthread cond signal(cond, mutex)
 Pthread cond broadcast(cond, mutex)

Pthreads: Condition Variables

 Pthread _cond_ wait(cond, mutex)
* Pthread cond signal(cond, mutex)

— Signal one thread waiting on cond

— Signaled thread re-acquires mutex
* At some later time, not necessarily immediately

 Pthread cond broadcast(cond, mutex)

Pthreads: Condition Variables

Pthread cond_wait(cond, mutex)
Pthread cond_signal(cond, mutex)

Pthread cond_broadcast(cond, mutex)

— Signal all threads waiting on cond

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex_lock(queuelock)
put request in queue
Pthread cond signal(notempty, queuelock)
Pthread _mutex_unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
Pthread cond wait(notempty, queuelock)
take request out of queue
Pthread mutex _unlock(queuelock)
read file from disk
Send(reply)
}

Not correct

* Signals have no memory
* Signal when no one is waiting is lost

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex _unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
if(avail <= ©) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)
}

Note

e Should now be clear why mutex must be held
e Avail is a shared data item

Still not quite correct

Q is empty, thread W1 waits

Thread L puts something in Q

— Sets availto 1

— Signals

— W1 is unblocked

Thread W2 runs and takes something out of Q
— Sets availto O

Now W1 runs
— It must check the value of avail

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex _unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
while(avail <= @) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread mutex _unlock(queuelock)
read file from disk
Send(reply)
}

Summary

 Why shared data and multithreading?

* Application multithreading
— Division of work
— Synchronization of shared data
— Fine-grain locking
— Privatization

