
Master in Financial Engineering (EPFL)

Financial Econometrics

Exercises session 1 : Elements of correction

Exercise 1 : Characterizing second-order stationarity
Let (εt)t∈Z denoted a (weak) white noise with variance σ2ε > 0.

1. Xt = εt − εt−1 ;
One has (for all t) :
– Expectation

E [Xt] = E [εt − εt−1]
= E [εt]− E [εt−1] = 0

since E [εt] = 0 for all t.
– Variance

V [Xt] = V [εt − εt−1]
= V [εt] + V [εt−1]− 2Cov(εt, εt−1) (using the preliminary exercise)

= 2σ2ε

since V(εt) = σ2ε for all t, and Cov(εt, εt−1) = E [εtεt−1] = 0 (absence of correlation of a
weak white noise).

– Autocovariances
– For h = ±1 :

γX(1) = Cov(Xt, Xt−1) = Cov(εt − εt−1, εt−1 − εt−2)
= −Cov(εt−1, εt−1) = V(εt−1)

(using the preliminary exercise and the absence of correlation of a WWN)

= −σ2ε .

– For |h| > 1 :

γX(h) = Cov(Xt, Xt−h) = Cov(εt − εt−1, εt−h − εt−h−1)
= 0.

The three conditions hold—the stochastic process is covariance-stationary.

2. Xt = a+ bεt + cεt−1
One has (for all t) :
– Expectation

E [Xt] = E [a+ bεt + cεt−1]

= a+ bE [εt] + cE [εt−1] = a

since E [εt] = 0 for all t.
– Variance

V [Xt] = V [a+ bεt + cεt−1]

= b2V [εt] + c2V [εt−1] + 2bcCov(εt, εt−1) (using the preliminary exercise)

= (b2 + c2)σ2ε

since V(εt) = σ2ε for all t, and Cov(εt, εt−1) = E [εtεt−1] = 0 (absence of correlation of a
weak white noise).
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– Autocovariances
– For h = ±1 :

γX(1) = Cov(Xt, Xt−1) = Cov(a+ bεt + cεt−1, a+ bεt−1 + cεt−2)

= cbCov(εt−1, εt−1)

(using the preliminary exercise and the absence of correlation of a WWN)

= cbσ2ε .

– For |h| > 1 :

γX(h) = Cov(Xt, Xt−h) = Cov(a+ bεt + cεt−1, a+ bεt−h + cεt−h−1)

= 0.

The three conditions hold—the stochastic process is covariance-stationary.

3. For t ≥ 0, Xt −Xt−1 = εt (one further assumes that ∀t > 0, εt |= X0).
One has :

Xt = Xt−1 + εt

= Xt−2 + εt−1 + εt
...

= X0 +
t−1∑
τ=0

εt−τ .

– Expectation

E [Xt] = E

[
X0 +

t−1∑
τ=0

εt−τ

]

= E [X0] +

t−1∑
τ=0

E [εt−τ ]

= E [X0]

for all t > 0. The first condition holds !
– Variance

V [Xt] = V

[
X0 +

t−1∑
τ=0

εt−τ

]

= V [X0] + V

[
t−1∑
τ=0

εt−τ

]
+ 2Cov

[
X0,

t−1∑
τ=0

εt−τ

]

= V [X0] +
t−1∑
τ=0

V [εt−τ ] + 2
t−1∑
τ=0

Cov [X0, εt−τ ]

since V

[
t−1∑
τ=0

εt−τ

]
=

t−1∑
τ=0

V [εt−τ ] +
∑
τ

∑
τ ′ 6=τ

Cov [εt−τ , εt−τ ′ ] =
t−1∑
τ=0

V [εt−τ ]

= V [X0] + tσ2ε

since V(εt) = σ2ε for all t, and Cov(X0, εt−τ ) = E [X0εt−τ ] = 0 for τ ∈ |[0, t − 1]| (∀t >
0, εt |= X0). Therefore, the second condition does not hold. The stochastic process is nons-
tationary.
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Exercise 2 : Linear transformation of a stationary process

1. Let (Xt) denote a weakly stationary stochastic process that has the following linear represen-
tation :

Xt = µ+
∞∑
k=0

θkεt−k

– One has :

E [Xt] = E

[
µ+

∞∑
k=0

θkεt−k

]

= µ+
∞∑
k=0

θkE [εt−k] = µ.

Moreover,

V [Xt] = V

[
µ+

∞∑
k=0

θkεt−k

]
= V

[ ∞∑
k=0

θkεt−k

]

=
∞∑
k=0

θ2kV [εt−k] +
∞∑
k=0

∑
j 6=k

θkθjCov [εt−k, εt−j ]

=
∞∑
k=0

θ2kV [εt−k]

since Cov [εt−k, εt−j ] = E [εt−kεt−j ] = 0 for k 6= j

= σ2ε

∞∑
k=0

θ2k.

Finally,

Cov [Xt, Xt−h] = Cov

µ+
∞∑
k=0

θkεt−k, µ+
∞∑
j=0

θjεt−h−j



= Cov


∞∑
k=0

θkεt−k︸ ︷︷ ︸
εt,εt−1,··· ,εt−h+1,εt−h,···

,
∞∑
j=0

θjεt−h−j︸ ︷︷ ︸
εt−h,εt−h−1,···


= Cov

h−1∑
k=0

θkεt−k +

∞∑
k=h

θkεt−k,

∞∑
j=0

θjεt−h−j


= Cov

 ∞∑
k=h

θkεt−k,
∞∑
j=0

θjεt−h−j


= Cov

 ∞∑
j=0

θj+hεt−h−j ,
∞∑
j=0

θjεt−h−j

 (using k − h = j)

= V

 ∞∑
j=0

θjεt−h−j

 = σ2ε

∞∑
j=0

θjθj+h.
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Exercise 3 : Autocorrelation function of an autoregressive process
Consider an AR(1) process

Xt =
4

5
Xt−1 + ηt (1)

where ηt is a weak white noise.
Part I : ACF using the infinite moving average representation

1. By backward iteration, it is straightforward to show that [...]

Xt =
∞∑
k=0

(
4

5

)k
ηt−k

2. Using the infinite moving average representation, one obtains :

V [Xt] = V

[ ∞∑
k=0

(
4

5

)k
ηt−k

]

=
∞∑
k=0

(
4

5

)2k

V [ηt−k]

= σ2ε

∞∑
k=0

(
4

5

)2k

=
1

1− 0.82
σ2η

since (ηt) is a weak white noise and is even the innovation process of (Xt).

3. The derivation of the autocorrelation function is straightforward (using Exercise 2 or the
Yule-Walker equation). One obtains :

ρX(k) = 0.8k.

Part II : ACF using the Yule-Walker equation

1. Multiplying Eq. (1) by Xt and taking the expectation on both sides yield :

γX(0) = 0.8γX(1) + σ2η.

On the other hand, multiplying Eq. (1) by Xt−1 and taking the expectation on both sides
yield :

γX(1) = 0.8γX(0).

Using the last two equations, one obtains γX(0) (variance) and the autocovariance of order
1, and thus the autocorrelation of order 1. More generally, for |h| ≥ 1, this is the so-called
Yule-Walker equation for the autocovariance (respectively, autocorrelation function).

2. Show that the autocorrelation function is driven by a difference equation of order 1 : See
previous question.

3. Solving this difference equation provides the same results as those of Part I !

Part III : PACF

1. By definition !

2. The affirmation of the student is correct. Indeed, if the higher order partial autocorrelation
are different from zero, it means that the process is not an AR(1) (and is thus misspecified).

Part IV : Extensions
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1. Consider the following AR(2) process

Xt =
1

3
+

5

6
Xt−1 −

1

6
Xt−2 + ηt

where ηt is a weak white noise.
One first demeans the stochastic process. In so doing, it is worth noting that (since (Xt) is
weakly stationary)

E [Xt] =
1/3

1− 5/6 + 1/6
= 1.

Let X̃t denote (for all t)

X̃t = Xt − 1.

It follows that (X̃t, t ∈ Z) is defined by :

X̃t =
5

6
X̃t−1 −

1

6
X̃t−2 + ηt.

Notably, it is straightforward to show that the autocorrelation function of (Xt) is exactly the
same as the one of (X̃t). Then,
– Step 1 : Multiply both sides by X̃t and take the expectation :

γX̃(0) =
5

6
γX̃(1)− 1

6
γX̃(2) + σ2η.

– Step 2 : Multiply both sides by X̃t−1 and take the expectation :

γX̃(1) =
5

6
γX̃(0)− 1

6
γX̃(1).

– Step 3 : Multiply both sides by X̃t−2 and take the expectation :

γX̃(2) =
5

6
γX̃(1)− 1

6
γX̃(0).

Using the last three equations, one gets the variance, the autocovariance of order 1 (and
the autocovariance of order 2).

– Step 4 : More generally, for |h| ≥ 2 :

γX̃(h) =
5

6
γX̃(h− 1)− 1

6
γX̃(h− 2)

and

ρX̃(h) =
5

6
ρX̃(h− 1)− 1

6
ρX̃(h− 2).

The autocovariance (respectively, autocorrelation) function is defined from a difference equa-
tion of order 2 (i.e., one needs two initial conditions if the two roots are distinct).

Exercise 4 : The ARMA(1,1) is defined to be

Xt =
1

3
+

1

8
Xt−1 + εt −

3

4
εt−1
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where (εt) is a weak white noise.
Before answering questions 1-3, we first demean the stochastic process. In so doing, it is worth
noting that (since (Xt) is weakly stationary)

E [Xt] =
1/3

1− 1/8
=

8

21
.

Let X̃t denote (for all t)

X̃t = Xt −
8

21
.

It follows that (X̃t, t ∈ Z) is defined by :

X̃t =
1

8
X̃t−1 + εt −

3

4
εt−1. (2)

Notably, it is straightforward to show that the autocorrelation function of (Xt) is exactly the same
as the one of (X̃t).

1. The moving average process is defined by (for all t) :

Wt = εt −
3

4
εt−1.

It is straightforward to show that

ρW (h) =


1 if h = 0

−3/4
1+9/16 if h = ±1

0 if |h| > 1.

2. For h = 0, we can multiply Eq. (2) by X̃t and take the expectation on both sides :

E
[
X̃2
t

]
=

1

8
E
[
X̃tX̃t−1

]
+ E

[
X̃tεt

]
− 3

4
E
[
X̃tεt−1

]
.

Therefore, one has

γX̃(0) =
1

8
γX̃(1) + σ2ε −

3

4
E
[
X̃tεt−1

]
where

E
[
X̃tεt−1

]
= E

[(
1

8
X̃t−1 + εt −

3

4
εt−1

)
εt−1

]
=

1

8
E
[
X̃t−1εt−1

]
− 3

4
E
[
ε2t−1

]
=

(
1

8
− 3

4

)
σ2ε = −5

8
σ2ε .

In the same respect (after multiplying by X̃t−1 and taking the expectation on both sides), for
h = 1, one gets

γX̃(1) =
1

8
γX̃(0)− 3

4
E
[
X̃t−1εt−1

]
which is equivalent to

γX̃(1) =
1

8
γX̃(0)− 3

4
σ2ε .

Using the two equations (h = 0 and 1), one can obtain the autocovariance of order 0 (i.e., the
variance) and the autocovariance of order 1 (and thus the autocorrelation of order 1).
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3. When |h| ≥ 2, the moving average part does not contribute (due to the fact that (εt) is the
innovation process). Consequently, the Yule-Walker equation (for the autocovariance function)
is given by

γX̃(h) =
1

8
γX̃(h− 1)

and the autocorrelation function is given by a difference equation of order one :

ρX̃(h) =
1

8
ρX̃(h− 1).

Exercise 5 Consider the following AR(p) stochastic processes

(i) Xt = 1
2 + 4

5Xt−1 + εt, where εt is a weak white noise (0, σ2ε ).

(a) First, write this stochastic process in mean-deviation

X̃t =
4

5
X̃t−1 + εt

where X̃t = Xt −mX with mX =
1
2

1− 4
5

= 5
2 .

The best linear forecast for h = 1 is defined to be

X̃∗t (1) = EL
[
X̃t+1 | X̃t, X̃t−1, · · ·

]
where

X̃t+1 =
4

5
X̃t + εt+1.

Since the representation of (Xt) is fundamental, (εt) is the innovation process of (Xt)
(and (X̃t)) and

EL
[
εt+1 | X̃t, X̃t−1, · · ·

]
= 0.

Therefore

X̃∗t (1) = EL
[

4

5
X̃t + εt+1 | X̃t, X̃t−1, · · ·

]
=

4

5
X̃t

and

X∗t (1) = X̃∗t (1) +mX

= mX +
4

5
(Xt −mX)

=
1

2
+

4

5
Xt.

The best linear forecast for h = 2 is defined to be

X̃∗t (2) = EL
[
X̃t+2 | X̃t, X̃t−1, · · ·

]
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where

X̃t+2 =
4

5
X̃t+1 + εt+2.

Therefore

X̃∗t (2) = EL
[

4

5
X̃t+1 + εt+2 | X̃t, X̃t−1, · · ·

]
=

4

5
EL
[
X̃t+1 | X̃t, X̃t−1, · · ·

]
+ EL

[
εt+2 | X̃t, X̃t−1, · · ·

]
=

4

5
X∗t (1)

=

(
4

5

)2

X̃t.

and

X∗t (2) = X̃∗t (2) +mX

=

(
4

5

)2

X̃t +mX

=

(
4

5

)2

Xt +mX

(
1−

(
4

5

)2
)
.

(b) The forecast error for h = 1 is given by

et(1) = Xt+1 −X∗t (1) ≡ X̃t+1 − X̃∗t (1)

=
4

5
X̃t + εt+1 −

4

5
X̃t

= εt+1

and the corresponding variance is

V [et(1)] = V [εt+1] = σ2ε .

The forecast error for h = 2 is given by 1

et(2) = Xt+2 −X∗t (2) ≡ X̃t+2 − X̃∗t (2)

=
4

5
X̃t+1 + εt+2 −

4

5
X̃∗t (1)

=
4

5

(
X̃t+1 − X̃∗t (1)

)
+ εt+2

=
4

5
et(1) + εt+2

=
4

5
εt+1 + εt+2

1. One can also write

et(2) = Xt+2 −X∗t (2) ≡ X̃t+2 − X̃∗t (2)

=
4

5
X̃t+1 + εt+2 −

4

5
X̃∗t (1)

=
4

5

(
4

5
X̃t + εt+1

)
+ εt+2 −

(
4

5

)2

X̃t

=
4

5
εt+1 + εt+2.
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and the corresponding variance is

V [et(2)] = V
[

4

5
εt+1 + εt+2

]
=

[
1 +

(
4

5

)2
]
σ2ε .

(c) More generally, the h-step ahead forecast (for h ≥ 1) is defined to be

X̃∗t (h) = EL
[
X̃t+h | X̃t, X̃t−1, · · ·

]
where

X̃t+h =
4

5
X̃t+h−1 + εt+h.

Using the fundamental representation and the linear expectation properties, one gets

X̃∗t (h) = EL
[

4

5
X̃t+h−1 + εt+h | X̃t, X̃t−1, · · ·

]
=

4

5
EL
[
X̃t+h−1 | X̃t, X̃t−1, · · ·

]
+ EL

[
εt+h | X̃t, X̃t−1, · · ·

]
=

4

5
X∗t (h− 1).

This is a difference equation of order one. The characteristic equation is the same as the
one used for the stability condition (the fundamentalness of the representation).

On the other hand, the forecast error is defined to be

et(h) = Xt+h −X∗t (h) ≡ X̃t+h − X̃∗t (h)

=
4

5
X̃t+h−1 + εt+h −

4

5
X̃∗t (h− 1)

=
4

5

(
X̃t+h−1 − X̃∗t (h− 1)

)
+ εt+h

=
4

5
et(h− 1) + εt+h.

Using a backward induction, one gets 2

et(h) = εt+h +

(
4

5

)
εt+h−1 + · · ·+

(
4

5

)h−1
εt+1

(since et(h) = 0 for h ≤ 0)

=
h−1∑
k=0

(
4

5

)k
εt+h−k.

2. One can also the infinite moving average representation :

X̃t+h =

∞∑
k=0

(
4

5

)k

εt+h−k

and the equivalent definition of the best linear h-step ahead forecast

X̃∗t (h) =

∞∑
k=h

(
4

5

)k

εt+h−k.

It follows that

et(h) = Xt+h −X∗t (h) ≡ X̃t+h − X̃∗t (h)

=

∞∑
k=0

(
4

5

)k

εt+h−k −
∞∑

k=h

(
4

5

)k

εt+h−k

=

h−1∑
k=0

(
4

5

)k

εt+h−k.
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The variance of the h-step ahead forecast is given by :

V [et(h)] = V

[
h−1∑
k=0

(
4

5

)k
εt+h−k

]

= σ2ε

h−1∑
k=0

(
4

5

)2k

= σ2ε
1−

(
4
5

)2h
1−

(
4
5

)2 .
(d) It follows that

X̃∗t (h) =

(
4

5

)h
X̃t

−→
h→∞

0 ≡ E
[
X̃t

]
and

X∗t (h) = X̃∗t (h) +mX

−→
h→∞

mX .

(ii) Xt = 5
6Xt−1 − 1

6Xt−2 + εt, where εt is a weak white noise (0, σ2ε ).

(a) The best linear forecast for h = 1 is defined to be

X∗t (1) = EL [Xt+1 | Xt, Xt−1, · · · ]

where

Xt+1 =
5

6
Xt −

1

6
Xt−1 + εt+1.

Using the fundamentalness of the representation (the two roots of the characteristic
equation, 1

2 and 1
3 , are of modulus less than one) and the properties of EL, it follows that

X∗t (1) = EL
[

5

6
Xt −

1

6
Xt−1 + εt+1 | Xt, Xt−1, · · ·

]
= EL

[
5

6
Xt −

1

6
Xt−1 | Xt, Xt−1, · · ·

]
+ EL [εt+1 | Xt, Xt−1, · · · ]

=
5

6
Xt −

1

6
Xt−1.

The best linear forecast for h = 2 is defined to be

X∗t (2) = EL [Xt+2 | Xt, Xt−1, · · · ]

where

Xt+2 =
5

6
Xt+1 −

1

6
Xt + εt+2.

Therefore

X∗t (2) = EL
[

5

6
Xt+1 −

1

6
Xt + εt+2 | Xt, Xt−1, · · ·

]
= EL

[
5

6
Xt+1 −

1

6
Xt | Xt, Xt−1, · · ·

]
+ EL [εt+2 | Xt, Xt−1, · · · ]

=
5

6
X∗t (1)− 1

6
Xt.
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(b) The forecast error of the one-step ahead forecast is given by

et(1) = Xt+1 −X∗t (1) = εt+1

and

V [et(1)] = V [εt+1] = σ2ε .

The forecast error of the two-step ahead forecast is given by

et(2) = Xt+2 −X∗t (2)

=
5

6
Xt+1 −

1

6
Xt + εt+2 −

5

6
X∗t (1) +

1

6
Xt

=
5

6
(Xt+1 −X∗t (1)) + εt+2

=
5

6
et(1) + εt+2

=
5

6
εt+1 + εt+2.

and

V [et(2)] = V
[

5

6
εt+1 + εt+2

]
=

[
1 +

(
5

6

)2
]
σ2ε .

(c) The best h-step ahead forecast is given by

X∗t (h) = EL [Xt+h | Xt, Xt−1, · · · ]

where

Xt+h =
5

6
Xt+h−1 −

1

6
Xt+h−2 + εt+h.

Therefore, for h ≥ 2

X∗t (h) = EL
[

5

6
Xt+h−1 −

1

6
Xt+h−2 + εt+h | Xt, Xt−1, · · ·

]
=

5

6
EL [Xt+h−1 | Xt, Xt−1, · · · ]−

1

6
EL [Xt+h−2 | Xt, Xt−1, · · · ] + EL [εt+h | Xt, Xt−1, · · · ]

=
5

6
X∗t (h− 1)− 1

6
X∗t (h− 2).

This is a difference equation of order 2—the roots of the characteristic equation are the
ones obtained for the fundamental representation. The general solution is

X∗t (h) = A

(
1

3

)h
+B

(
1

2

)h
where A and B can be determined by using two initial conditions.

(d) As h→∞, one has

X∗t (h) −→
h→∞

0.
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Exercise 6 Let (Xt) denote the following stochastic process

Xt =
1

3
+ εt −

3

4
εt−1 +

1

8
εt−2

1. The best h-step ahead forecast is given by

X∗t (h) = EL [Xt+h | Xt, Xt−1, · · · ]

where

Xt+h =
1

3
+ εt+h −

3

4
εt+h−1 +

1

8
εt+h−2.

Therefore (for h > 0)

X∗t (h) = EL
[

1

3
+ εt+h −

3

4
εt+h−1 +

1

8
εt+h−2 | Xt, Xt−1, · · ·

]
=

1

3
+ EL [εt+h | Xt, Xt−1, · · · ]−

3

4
EL [εt+h−1 | Xt, Xt−1, · · · ] +

1

8
EL [εt+h−2 | Xt, Xt−1, · · · ]

=
1

3
+ EL [εt+h | εt, εt−1, · · · ]−

3

4
EL [εt+h−1 | εt, εt−1, · · · ] +

1

8
EL [εt+h−2 | εt, εt−1, · · · ]

=
1

3
− 3

4
ε̃t+h−1 +

1

8
ε̃t+h−2

where

ε̃t+h−k =

{
0 if h > k
εt+h−k if h ≤ k.

Finally,
– h = 1

X∗t (1) =
1

3
− 3

4
εt +

1

8
εt−1

– h = 2

X∗t (2) =
1

3
+

1

8
εt

– h > 2

X∗t (h) =
1

3
.

Remark : The first two forecasts X∗t (1) and X∗t (2) cannot be used in practise (since εt and
εt−1 are not observable). How can one proceed ?...

2. The forecast error is given by

et(h) = Xt+h −X∗t (h)

=
1

3
+ εt+h −

3

4
εt+h−1 +

1

8
εt+h−2

−1

3
+

3

4
ε̃t+h−1 −

1

8
ε̃t+h−2

= εt+h −
3

4
(εt+h−1 − ε̃t+h−1) +

1

8
(εt+h−2 − ε̃t+h−2)

where

ε̃t+h−k =

{
0 if h > k
εt+h−k if h ≤ k.

Therefore
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– h = 1

et(1) = εt+1

and

V [et(1)] = V [εt+1] = σ2ε .

– h = 2

et(2) = εt+2 −
3

4
εt+1

and

V [et(2)] = V
[
εt+2 −

3

4
ε̃t+1

]
=

[
1 +

(
3

4

)2
]
σ2ε .

– h > 2

et(h) = εt+h −
3

4
εt+h−1 +

1

8
εt+h−2

and

V [et(h)] = V
[
εt+h −

3

4
εt+h−1 +

1

8
εt+h−2

]
=

[
1 +

(
3

4

)2

+

(
1

8

)2
]
σ2ε .
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Exercise 7 : Consider the interest rate spread variable over the period 1960Q1-2010Q1.

1. Some elements :
– Using Figure 1, it is difficult to assess (visual procedure) whether or not the series is statio-

nary. All in all, the series might be mean-reverting but with a large degree of persistence.
– Using Figure 2 (acf of Xt), the decreasing rate of the autocorrelation function (only five lags

are statistically different from zero using a Bartlett’s correction for the confidence bands)
tends to favor the assumption that the series may be (weakly) stationary. Figure 2 also
suggest that qmax = 5.

– Using Figure 3, one can identify a upper bound for the autoregressive part (as long as the
series is weakly stationary). One can choose pmax = 9. Using the parsimony principle (in a
first step) will rather suggest pmax = 6.

– Using Figure 4 and Figure 5, one can identify a upper bound for the moving average part
(respectively, autoregressive part) if the series Xt is (asymptotically) stationary in first-
difference...

2. Different unit root tests are conducted in order to identify d.

(a) The DF unit root test is presented in Table 1.

Table 1 : DF unit root test

Parameter Estimation Std. Err. t-stat. p-value

φ -0.1111 0.0330 -3.3624 0.0009
c 0.1575 0.0603 2.6083 0.0098

Note : Tabulated critical values of the Student test statistic at 1%, 5% et 10% are res-
pectively -3.464, -2.876 and -2.574,.

– There is no apparent trend in Figure 1. Therefore, case 2 makes more sense than case
4 (see handouts). The test regression is

∆Xt = φXt−1 + c+ εt

The null hypothesis is H0 : φ = 0. The alternative hypothesis is Ha : φ < 0.
– The DF Student test statistic is -3.3624. 3

– The test statistic falls below the 1% critical value (or the test statistic is not greater
than the critical values) : one rejects the null hypothesis of nonstationarity. 4

(b) Table 2 provides the results of the ADF unit root test using SBIC (the maximum number
of lags is 12).

Table 2 : ADF unit root test

Parameter Estimation Std. Err. t-stat. p-value

A. One lag

φ∗(1) -0.1362 0.0331 -4.1183 0.0001
α1 0.2454 0.7079 3.4663 0.0007
c 0.1890 0.0598 3.1588 0.0018

Note : Tabulated critical values of the Student test statistic at 1%, 5% et 10% are res-
pectively -3.464, -2.876 and -2.574,.

– The optimal number of lags is one (using the SBIC). The test regression is given by

∆Xt = φ∗(1)Xt−1 + α1∆Xt−1 + εt

The null hypothesis is H0 : φ∗(1) = 0. The alternative hypothesis is Ha : φ∗(1) < 0.
The tADF statistic, which is -4.1183, falls below the 1% (respectively, 5%, 10%) critical
value : one rejects the null hypothesis of nonstationarity.

3. It is worth noting that one cannot use the p-value to interpret this test-statistic since the asymptotic distribution
is nonstandard !

4. The test is a left one-sided.
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(c) Table 3 provides the results of the PP unit root test.

Table 1 : DF unit root test

Parameter Estimation Std. Err. t-stat. p-value

φ -0.1111 0.0330 -3.3624 0.0009
c 0.1575 0.0603 2.6083 0.0098

Note : Tabulated critical values of the Student test statistic at 1%, 5% et 10% are res-
pectively -3.464, -2.876 and -2.574,.

The PP test statistic is given by -3.7910.

– The PP test implements a nonparametric correction of the DF test statistics. In so doing,
the test regression is the same and thus the estimates do not change (see Lecture notes).

– Again...one rejects the null of nonstationarity (the interpretation is the same as in the
Dickey-Fuller test).

(d) Finally, a KPSS unit root test (with only a constant) is conducted. The LM test statistic is
given by 0.2959. The asymptotic critical values are given by 0.739 (1% level), 0.463 (5%
level), and 0.347 (10% level).
The KPSS statistic is lower than the critical value at 1%, 5% or 10% : one cannot reject
the null of stationarity. In this respect, the two types of test (null of stationarity and null
of nonstationarity) lead to the same conclusion.

(e) One might choose d = 0.

3. Using the autocorrelation function (Figure 2) and the partial autocorrelation function (Figure
3), determine some orders p and q. See Question 1.

4. Table 4 reports the information criteria AIC (panel A), SBIC (panel B), and HQ (panel C).
Some comments
– Choose the models that minimize each information criterion (the lowest value as well as

adjacent values).
– For example, using SBIC, one may choose Arma()(1,1), Arma()(2,1), etc.
– Here, choosing q > 5 is not a good strategy, especially for AIC, given the order identification

(qmax = 5). 5

5. Some comments
– The two specifications Arma()(2,6) and Arma()(2,7) are quite close in terms of information

criteria (AIC, SBIC or HQ). 6 At the same time, the estimates are completely different...While
all estimates are statistically different from zero (with the exception of φ1) in the case of
an Arma()(2,6), all estimates are not statistically different from zero (with the exception
of the constant term) in the case of an Arma()(2,7). 7

– In contrast, the Arma()(2,(1,7)) specification, which is defined by

Xt = µ+ φ1Xt−1 + φ2Xt−2 + εt + θ1εt−1 + θ7εt−7,

performs very well in terms of in-sample information criteria. This specification is obtained
by imposing some linear constraints on the Arma()(2,7). The choice of this specification
is rationalized in Question 6 (autocorrelation tests). At the end, this specification has the
lowest value for the SBIC (this is not true for the AIC...but the AIC may over-parameterize
in this application...).

6. Table 7 displays the (sample) autocorrelation function and the (sample) partial autocorrelation
function. Moreover, the Portmanteau test is implemented for each model of the previous
question.

5. It is worth noting that the values of the information criteria provide some relevant information regarding the
specification as long as this information is correctly used. See further.

6. Compare the values in Table 4 !
7. The fact that the standard errors increase substantially after adding a lag suggests that the information regarding

the moving average part is redundant and that there is a problem of pseudo-colinearity.
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– It is useful to look at the (sample) autocorrelation function of the residuals in order to check
that the residuals behave like a (weak) white noise (as assumed in the definition). In the
presence of autocorrelation, the retained model (step 3 : Box and Jenkins) is misspecified
(and one may go back to step 1 or step 2 to improve the specification).

– The Box-Pierce Q-statistic (or portmanteau test) tests the joint hypothesis that the first K
autocorrelations of the adjusted error terms are jointly zero :

H0 : ρε̂(1) = ρε̂(2) = · · · = ρε̂(K) = 0.

The test statistic is given by :

Q = T

K∑
k=1

ρ̂2ε̂ (k)

where ρ̂2ε̂ (k) is the k-th order sample autocorrelation of the estimated residuals, T is the
sample size, and K is chosen sufficiently large.
The Q-test has an asymptotic chi-square (χ2) distribution with K−p−q degrees of freedom.

– The null hypothesis of uncorrelated (estimated) residuals is rejected if the observed test
statistic, Q, exceeds the tabulated critical value (for a chosen significance level). The null
hypothesis is rejected in the following cases : Ar()(2), Arma()(1,1), Arma()(2,1). In the
case of an Arma()(2,1), the null hypothesis is rejected for K large enough. The null hypo-
thesis (absence of correlation) is not rejected for the Ar()(7) and Arma()(2,(1,7)). 8 It is
worth noticing that the autocorrelation of order 7 is generally large when the null hypothesis
is rejected : this tends to justify why an Arma()(2,(1,7)) is estimated (in order to capture
this autocorrelation of the residuals, one can add a lag of order 7 in the moving average
part).

– Choose Ar()(7) and Arma()(2,(1,7)) !

7. Finally, one-step ahead forecasts are implemented : the model is estimated with a recursive
window. The first estimation is done over the period 1960Q4-1995Q3. In order to compare the
one-step ahead forecasts, one compute the Diebold-Mariano test using the RMSE (respectively,
MAE).
– See lecture notes.
– Some comments

– Using RMSE, one cannot reject the null hypothesis of equal accuracy.
– Using MAE, the Arma()(1,1) specification ”outperforms” other models (for h = 1). In-

terestingly, this model was misspecified : in-sample performances are not the same as
out-of-sample performances !

– All in all, the conclusion depends on the out-of-sample information criterion. It may also
depend on the forecasting horizon (only h = 1 is considered !). 9

8. Bonus question ! As a final check, one computes the following regression

Xt = a+ bX∗t−1(1) + ut

for all t in the holdout period.

Some comments :
– Using this specification, one should expect that the estimate of b is close to one (why ?) and

that the estimate of a is not statistically different from zero (otherwise, it means that there
is a systematic bias in the forecasts).

– Table 10 shows that one cannot reject the null hypothesis that a equals zero, etc. Interes-
tingly, the two models, Ar()(7) and Arma()(2,(1,7)), perform better than the others...

8. It is worth noting that the first p+ q statistics and p-values do not make sense since the asymptotic distribution
is not defined.

9. Other issues are the finite sample behavior of this test, the correction for autocorrelation, etc.
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