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These lecture notes briefly summarize some important concepts in time series analysis.1

1 Definition of a time series
Suppose that one is interested in a variable (say, a price) or a transformation of that vari-
able (say, a return or log-return) over a given time period: Asset price, asset return, inter-
est rates, exchange rates, bond yields, dividend returns, earnings returns, etc. This vari-
able of interest (the realizations) is observed at different (regular) periods (t = t1, · · · , tk)
and the time elapsed between two realizations is constant (say, daily, monthly, quarterly,
yearly observations).2

Taking the frequency of the data, the sequence of realizations is a time series, i.e. the
time-ordered sequence of observations, say x1, x2, · · · , xT , is a time series. Moreover, the
data generating process underlying these realizations is called a stochastic process, which
is the building block of time series theory. More specifically, a real (univariate) stochastic
process can be defined as follows.

Definition 1. A real-valued (discrete-time) stochastic process is a sequence of random
variables indexed by t ∈ Z on the probability space (Ω,A,P) :

Z× Ω→ R
(t, ω) 7→ X(t, ω) = Xt(ω).

where Ω is the sample space, ω ∈ Ω is a state of the nature such that xt = Xt(ω), A is a
σ-algebra, and P is a probability measure.

For instance, one can define the following stochastic processes (for a given ω):

• For all t ∈ Z, Xt = φXt−1 + εt where εt is a weak white noise;

• For all t ∈ Z, Xt = εt + θεt−1 where εt is a weak white noise;

• For all t ≥ 0, Xt = Xt−1 + εt where εt is a weak white noise.
1For a more advanced overview, see Tsay (2002) or Hamilton (2005).
2In practice, this is not always the case (e.g., tick-by-tick data or transaction time).
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It is worth noticing that one might interpret such a (discrete-time) stochastic process as
being a "kind" of stochastic difference equation.

Using Definition (1), one can define a realization of a stochastic process for a given initial
state of the world (or a given event ω) and thus the concept of time series (or chronological
series).

Definition 2. A realization of the stochastic process (Xt)t∈Z for a given ω ∈ Ω is the
mapping defined by :

Z→ R
t 7→ xt(ω).

The realization of a stochastic process is said to be a time series or a chronological series.
�

2 Stationarity
In order to propose some statistical models, a time series must be "enough regular",
meaning that some of its features can be explained by a proper modeling. Among these
properties, the concept of stationary is essential.

Briefly speaking, stationarity "means" that some essential properties of a time series
remain constant over time (as for instance, the mean, the variance, and the autoco-
variances). Depending on whether all characteristics (as for instance, all moments) or only
some particular ones (as for instance, the first and second moments, and the covariances)
are of interest, different types of stationarity can be defined: strong stationarity, weak
stationarity, etc.

To provide some intuition, Figure 1 plots the S&P500 composite index.3 The series
is clearly not mean-reverting and it might display a (stochastic) trend. This series looks
like a non-stationary series. On the other, using the first-difference of the initial series in
Figure 2, i.e. ∆Xt = Xt −Xt−1 where Xt = log(Pt), the (log-) return is mean-reverting
and looks like a (weakly) stationary series.

3A second intuition is provided in Appendix 1.
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Figure 1: Time series of the S&P500 (January 1957 - December 2012)
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Figure 2: Time series of the S&P500 log returns (January 1957 - December 2012)
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The same patterns are observed when comparing the dynamics of dividends (top panel)
or of earnings (bottom panel). The left panel provides the initial series (i.e., in level)
whereas the right panel displays the first-difference of the initial series.
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Figure 3: Dividend and earnings (1965M1 - 2005M12)
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In both examples, the statistical properties of the initial series and the transformed series
are rather different. This has some key implications regarding the modeling of financial
time series, estimation methods, etc. Therefore, it is critical to disentangle the nature of
the time series, and especially whether it is weakly stationary or non-stationary. In this
respect, weak (second-order or covariance) stationarity can be defined as follows.4

Definition 4 (Weak stationarity). A stochastic process (Xt) is weakly stationary, covari-
ance or second-order stationary if it satisfies the following properties:

1. E(Xt) = m is independent of t;

2. V(Xt) is time-invariant.

3. Cov(Xt, Xt+h) = E [(Xt −m)(Xt+h −m)] = γX(h) is time-invariant.

Say differently, a process is weakly stationary if both the population mean and the pop-
ulation variance are constant over time and if the covariance between two realizations
(observations) is a function only of the distance between them and thus does not depend
on time. At the same time, weak stationarity exploits the "stability" of the first two
moments whereas strong stationarity implies the stability of all the moments (among oth-
ers). This means that strong stationarity implies weak stationarity as long as the first
two moments exist. The converse is not true in general.5

Example 1: One prominent example of a second-order stationary series is a weak white
noise. More specifically, a weak white noise process (see Figure 4), (εt), satisfies the
following properties

4Weak stationarity is often opposed to strong stationary.

Definition 3 (Strong stationarity). A stochastic process (or a time series) (Xt)t∈Z is said to be strongly
or strictly stationary if the distribution of (Xt)t∈Z is identical to that of (Yt)t∈Z with Yt = Xt+h.
�

5It is worth noticing that if (Xt) is a Gaussian stochastic process, weak stationarity is equivalent to
strong stationarity.
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1. E(εt) = 0 for all t;

2. V(εt) = σ2
ε < +∞ for all t.

3. Cov(εt, εt−h) = 0 for h 6= 0

Figure 4: White noise process
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A quick visual inspection reveals that the series looks like a mean-reverting series (fluc-
tuations around a zero-mean here). Moreover, there is no specific pattern regarding the
autocorrelation and fluctuations behave "regularly" (i.e., the variance might not depend
on time).

Example 2: Any (financial) time series that can be written as a linear combination of
a weak white noise process is also weakly stationary :

Xt = µ+
∑
k≥1

akεt−k.

Example 3: A fundamental (discrete-time) stochastic process in finance is the so-called
random walk with or without drift (i.e., a constant):

Xt = µ+Xt−1 + εt (random walk with a drift)
Xt = Xt−1 + εt (random walk without a drift).

Such a process is a non-stationary. In the case of random walk without a drift, one has
(by backward induction):

Xt = Xt−2 + εt−1 + εt = · · ·

= X0 + ε1 + · · ·+ εt = X0 +
t−1∑
j=0

εt−j.
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Such a process is non-stationary since (assuming that the initial realization of X0 is fixed):

V(Xt) = V

(
X0 +

t−1∑
j=0

εt−j

)
= V

(
t−1∑
j=0

εt−j

)
=

t−1∑
j=0

V(εt−j)

= σ2
ε

t−1∑
j=0

1 = tσ2
ε ,

and thus the variance does depend on t!

In the case of a random walk with a drift, one has:

Xt = µ+Xt−1 + εt

= µ+ (µ+Xt−2 + εt−1) + εt = · · ·

= X0 + µ× t+ ε1 + · · ·+ εt = X0 + µ× t+
t−1∑
j=0

εt−j.

It is then straightforward to show that the three conditions of weakly stationary do not
hold anymore. Interestingly, one can see that there is a "kind" of "deterministic trend",
"µ× t", after using a backward induction: this is a direct consequence of the presence of a
so-called unit-root—the coefficient of the first lag, Xt−1, is one! This is rather a so-called
stochastic trend. Figure 5 displays two examples of random walks. Note that the random
walk with a drift depicts a "trend" ( a stochastic trend) and it might justify why random
walks might be used to describe dynamics of stock prices (among others).

Figure 5: Examples of random walks
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This "proximity" of the first autoregressive coefficient (the one of Xt−1) is often considered
as being a "signal" of non-stationary. For instance, consider data on US zero-coupon bonds
with different maturities (Figure 6).
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Figure 6: Data on US zero-coupon bonds with different maturities
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Using a simple OLS-based estimation (for different maturities), one obtains the results of
Table 1.6 Irrespective of the maturity, the autoregressive coefficient estimate is "close" to
one : there might be some issues regarding the non-stationarity of these series. Note that
a formal testing procedure can be implement using the so-called "unit root tests".7

Table 1: OLS estimate of AR(1) process
Maturity Intercept slope
(months) µ̂ sµ φ̂ sφ
2 0.164 0.086 0.974 0.012
3 0.156 0.084 0.976 0.012
4 0.149 0.084 0.977 0.012
5 0.149 0.084 0.978 0.012
6 0.154 0.086 0.977 0.012
9 0.158 0.088 0.977 0.012

3 Identification tools of weakly stationary (linear) time
series

Taking Lecture 1, a covariance stationary (financial) time series can be characterized by
some descriptive descriptive statistics (including some distribution tests), and especially
the autocovariance function, the autocorrelation function (ACF) and their sample coun-
terparts (e.g., the sample autocorrelation function—SACF). In the case of a linear time
series, some further statistical properties can be captured by the partial autocorrelation
function PACF (respectively, the sample partial autocorrelation function—SPACF).8 In

6It is worth noting that the asymptotic distribution of the (normalized) OLS estimator is not "stan-
dard" when the autoregressive coefficient is greater than or equal to one.

7For an introduction to unit root tests, see Hamilton (2005).
8For a definition of linear time series, see Definition 10.
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the case of (weakly stationary) linear time series, it can be shown that most of the rel-
evant features of a time series are captured by the sample autocorrelation function and
the sample partial correlation function.

Autocovariance and autocorrelation functions Taking a (financial) time series
or more generally a stochastic process, the autocovariance is a function that yields the
covariance of the time series (stochastic process) with itself at pairs of time points (i.e.,
at different lags).

Definition 5. The autocovariance function of a stationary stochastic process (Xt)t∈Z is
defined to be :

γ : Z→ R
h 7→ γX(h) = Cov(Xt, Xt−h).

with:

γX(h) = γX(−h).

On the other hand, the autocorrelation function captures the (unconditional) linear de-
pendency of the (financial) time series at different lags, i.e. the linear dependency between
the two "series" (Xt) and (Xt−h) for h ≥ 0.9

Definition 6. The autocorrelation function of a stationary stochastic process (Xt)t∈Z is
defined to be:

ρX(h) =
γX(h)

γX(0)
= Corr(Xt, Xt−h)

∀h ∈ Z.

Properties:

1. ρX(−h) = ρX(h) ∀h

2. ρX(0) = 1

3. The range of ρX is [−1; 1].

The autocorrelation function is often used to first assess the stationarity or non-stationarity
of a (financial) time series.10 In addition, different patterns of the autocorrelation func-
tion can be observed and it often provides some useful information regarding the choice
of certain models.11 Notably, the autocorrelation function, which captures the intrinsic

9Scatter plots, (xt, xt−h), can be used to visualize the linear dependency. See also Lecture 1.
10This is not a formal testing procedure.
11 Taking the autocorrelation function, if one observes the following patterns, some specifications are

preferable (see further):

• Exponential decay to zero: Autoregressive model (use the partial autocorrelation plot to identify
the order p);

• Damped oscillations decaying (exponentially) to zero: Autoregressive model;
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persistence of the (financial) time series, is often used to (partially) characterize an im-
portant class of time series models: the so-called (mixing) AutoRegressive and Moving
Average models (ARMA).

Using Definition 6, the sample autocorrelation function (see Lecture 1) can be expressed
as follows.

Definition 7. Given a sample of T observations, x1, · · · , xT , the sample autocorrelation
function, denoted by (ρ̂X(h)), is computed by:

ρ̂X(h) =

T∑
t=h+1

(xt − µ̂)(xt−h − µ̂)

T∑
t=1

(xt − µ̂)2

where µ̂ is the sample mean:

µ̂ =
1

T

T∑
t=1

xt.

Figure 7 displays US real equity returns (in %) with monthly data. A quick eye inspection
suggests that the series is mean-reverting and does not display any stochastic and/or
deterministic trend (among possible alternative models). This can be further supported
by looking at the autocorrelation function.

Figure 7: US monthly data on real equity returns (in %)
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• One or more spikes, the rest is essentially zero: Moving average model (order q identified by where
autocorrelation plot becomes zero);

• Exponential decay starting after a few lags: Mixed autoregressive and moving average model;

• No significant autocorrelations (zero or close to zero): White noise;

• High values at fixed intervals: Include seasonal autoregressive terms;

• No decay to zero or very slow decay: Non-stationarity or long-memory effects...
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In particular, instead of computing the sample autocorrelations (Definition 7) , it is worth
noting that the sample autocorrelations can be determined by using the following sequence
of linear regressons and by estimating φh with the ordinary least squares method:

rert = µh + φhrert−h + ut

Notably,

• For h = 1,12

rert = 0.419
(0.150)

+ 0.241
(0.042)

rert−1

i.e. ρ̂X(1) = 0.241.

• For h = 2,

rert = 0.549
(0.155)

+ 0.008
(0.043)

rert−2

i.e. ρ̂X(2) = 0.008.

• · · ·
After iterating this procedure and computing (say) the first 10 to 20 lags, there is some
evidence that the autocorrelation function decreases (exponentially) toward zero, i.e. the
series is weakly stationary. Note also that the intrinsic persistence of the series is quite
low, i.e. a few lags might be sufficient to take into consideration the autocorrelation prop-
erties of the series.

As a second example, consider the following financial time series (Figure 8) in the US
over the period 1960Q1-2010Q1 (quarterly data)

Figure 8: Financial time series (interest rate)
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The autocorrelation function (with some confidence bands in grey) are reported in Figure
9. The financial time series has some (intrinsic) persistence, the first autocorrelation
(i.e., the first autoregressive coefficient) is close to one, and the autocorrelation function
decreases toward zero. This suggests that the series might be weakly stationary with a
strong linear dependency for the first lags or that it might be a (nearly) non-stationary
process.

12Standard errors are in parentheses.
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Figure 9: Autocorrelation function
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Partial correlations function A partial correlation coefficient measures the correla-
tion between two random variables at different lags after adjusting for the correlation
this pair may have with the intervening lags: the (sample) PACF thus represents the
sequence of conditional correlations. On the other hand, a (sample) correlation coef-
ficient between two random variables at different lags does not adjust for the influence of
the intervening lags: the (sample) ACF thus represents the sequence of unconditional
correlations.

Definition 8. The partial autocorrelation function of a stationary stochastic process
(Xt)t∈Z is defined to be:

aX(h) = Corr(Xt, Xt−h | Xt−1, · · · , Xt−h+1)

∀h > 0.

As stated in Definition 9, the partial autocorrelation function can be determined by using
a sequence of multiple linear regressions (see Lecture 2).

Definition 9. The partial correlation function can be viewed as the sequence of the h-th
autoregressive coefficients in a h-th order autoregression. Let ah` denote the `-th autore-
gressive coefficient of an AR(h) process:

Xt = ah1Xt−1 + ah2Xt−2 + · · ·+ ahhXt−h + εt.

Then

aX(h) = ahh

for h = 1, 2, · · ·

Indeed, the autoregressive coefficient ahh (in a multiple linear regression with the first h
lags) can be interpreted (in an OLS sense) as the effect of Xt−h onto Xt after controling for
the (partial) effects of Xt−1, · · · , Xt−h+1. This is precisely the idea behind a conditional
correlation and then a partial correlation of order h. The information provided by the
(sample) partial correlation function is also useful to (partially) identify some linear time
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series models, as for instance ARMA models.

Application: As a first example, using the US real equity returns series (Figure 7),
one can compute the (sample) partial correlation function as follows.

• For h = 1,

rert = 0.419
(0.150)

+ 0.241
(0.042)

rert−1.

Therefore the first partial correlation is given by âX(1) = 0.241. Note that this
value is also the one of the first autocorrelation, i.e. âX(1) = ρ̂X(1).

• For h = 2,

rert = 0.443
(0.151)

+ 0.255
(0.043)

rert−1 − 0.053
(0.041)

rert−2

Consequently, the second partial correlation is given by âX(2) = −0.053.

• For h = 3,

rert = 0.431
(0.152)

+ 0.256
(0.043)

rert−1 − 0.062
(0.045)

rert−2 + 0.026
(0.043)

rert−3

In the same respect, the third partial correlation is âX(3) = 0.026.

• · · ·

As a second example, consider the financial time series (interest rate) in Figure 8. The
corresponding sample partial correlation (with some confidence bands) is reported in
Figure 10. After comparing Figure 9 and Figure 10, one can see that the information pro-
vided by the sample autocorrelation function and the sample partial correlation function
substantially differ.

Figure 10: Sample partial correlation function
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4 Some linear time series models
Some linear time series models can be proposed to capture the dynamics of a (financial)
time series.13 In the case of weakly stationary processes, the starting point is the so-called
Wold’s theorem.

Theorem 1 (Wold’s decomposition). Any covariance (weak) stationary time series (Xt)
can be represented in the form:

Xt = µ+
∞∑
k=0

θkεt−k

where µ is the mean of Xt, θ0 = 1, and (εt) is a white noise process with E(εt) = 0,
V(εt) = σ2

ε < +∞, and Cov(εt, εt−k) = 0, for all k 6= 0.

This representation only exploits the covariance stationary property. In particular, this
decomposition requires neither any distributional assumption nor any independence of
the error terms. While being useful from a theoretical perspective, this decomposition is
not so useful from an applied perspective since it is characterized by an infinite number
of parameters and the error terms are not observable.

In this respect, linear time series models can be viewed as an approximation of this
decomposition. A fundamental class of linear time series model is the so-called family of
AutoRegressive and Moving Average (ARMA) models (Box and Jenkins, 1976).

Definition 11 (ARMA(p,q)). A stochastic process is said to be an ARMA(p, q) process if
it has the following representation:

Xt = µ+ φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p

+εt + θ1εt−1 + · · ·+ θqεt−q

= µ+

p∑
k=1

φkXt−k +

q∑
j=0

θjεt−j.

where φp 6= 0, p is the order of the autoregressive part (the past values of Xt), θ0 = 1
and θq 6= 0, q is the order of the moving average part (the contemporaneous and past
value of the error term εt), and εt is a weak white noise process.

13A linear time series can be defined as follows.

Definition 10 (Linear time series). A time series (Xt) is said to be linear if it can be written as:

Xt = µ+

∞∑
k=0

θkεt−k

where µ is the mean of Xt, θ0 = 1, and (εt) is a white noise process with E(εt) = 0, V(εt) = σ2
ε < +∞,

and Cov(εt, εt−k) = 0, for all k 6= 0.

More generally, a linear stochastic process has the following form:

Xt = µ+

+∞∑
k=−∞

θkεt−k.
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Several points are worth commenting. First, the autoregressive part captures the (intrin-
sic) persistence of the series whereas the moving average part captures the noisy compo-
nent. Second, some restrictions (stationarity conditions) are commonly imposed on the
autoregressive coefficients such that the stochastic process (e.g., the financial time series)
is weakly (second-order or covariance) stationary—see Appendix 3. Third, some further
restrictions must be considered in order to interpret the weak white noise process, (εt),
as being the innovation process. Indeed, one should expect for estimation purposes that
there is no correlation between εt and past values of the stochastic process, Xt−1, Xt−2, · · · .
In particular, if εt is the innovation at time t, it can be interpreted as the new infor-
mation that appears at time t and that was not predictable at time t− 1.14 In
this case, given that E(εt) = 0, one has (kind of "exogeneity" assumption—see Lecture
2):

E(εtXt−k) = Cov(εt, Xt−k) = 0 ∀k > 0.

Fourth, the autoregressive component and the moving average component can be identified
to some extent by using the (sample) autocorrelation function and the (sample) partial
correlation function. For instance, using some lags of the dependent variable only makes
sense if there is some persistence or some information content of past values. Fifth, when
q = 0, one gets an AutoRegressive (AR) process of order p. In contrast, when p = 0, one
obtains a Moving Average (MA) process of order q.

Definition 13 (AR(p)). A stochastic process (Xt) is said to be an AR(p), if it has the
following representation:

Xt = µ+ φ1Xt−1 + · · ·+ φpXt−p + εt ∀t

where φp 6= 0, µ is a constant term, and (εt) is a weak white noise process.

Definition 14 (MA(q)). A stochastic process (Xt) is said to be a MA(q), if if it has the
following representation:

Xt = µ+ εt + θ1εt−1 + · · ·+ θqεt−q ∀t

where θq 6= 0, µ is a constant term, and (εt) is a weak white noise process.

14The innovation process can be defined as follows.

Definition 12. Let (Xt) denote a covariance stationary process. The innovation process of (Xt), denoted
(εt), is defined to be:

εt = Xt −X∗t ≡ Xt = Xt − EL
(
Xt | Xt−1

)
where the best linear forecast of Xt given the available information at time t − 1, denoted It =
{Xt−1, Xt−2, · · · } ≡

{
Xt−1

}
, is defined to be:

X∗t = EL (Xt | It−1) ≡ EL
(
Xt | Xt−1

)
.

It is worth noticing that the innovation process is a weak white noise process, but the converse is generally
not true.
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Definitions 11, 13, and 14 are useful for estimating some macroeconomic time series as
well as some financial time series (exchange rates, interest rates). However, this is not
sufficient to capture the dynamics of log-return (see Lecture 1).

As a final remark, when the series is non-stationary and the source of non-stationarity is
the presence of one stochastic trend (e.g., in the case of a random walk), one can still use
a first-difference transformation so that the resulting series will be weakly stationary. In
this case, the order of integration of the initial series is one, denoted Xt ∼ I(1), and the
order of integration of the first-differenced series is zero, denoted ∆Xt = Xt−Xt−1 ∼ I(0).
More specifically, any weakly stationary series is I(0) and a series integrated of order one
needs a first-difference transformation to be weakly stationary.15 In this respect, the
dynamics of the initial series might be described with an ARIMA(p,1,q) model.16

Definition 15 (ARIMA). A stochastic process (Xt)t≥−p−1 is said to be an ARIMA(p,1,q)—
an autoregressive integrated moving average model—if it satisfies the following equation
(with some further conditions):

∆Xt = µ+

p∑
k=1

φk∆Xt−k +

q∑
j=1

θjεt−j ∀t ≥ 0

where εt is a (weak) white noise process with variance σ2
ε , θ0 = 1, θq 6= 0 and φp 6= 0.
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such that LXt = Xt−1. In practise, financial time series are either integrated of order one or order zero.

16This can be generalized to an ARIMA(p,d,q) process.
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Appendix 1: Stationarity
Suppose that one can observe multiple time-series data of the same process over the same
time period (Figure 11).

Figure 11: Multiple time series data for the same stochastic process
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In this respect, one could obtain the mean (variance or covariance) values for each t (with
t = 1, · · · , T ). For instance, Table 2 reports the first twenty realizations of each time
series, X1t, · · · , X4t, of the same stochastic process. The last column displays the mean
for each time period.

Table 2: Multiple time-series of the same stochastic process
Time X1t X2t X3t X4t mean
1 5.25 5.3 5.8 6.4 5.69
2 6.48 6.3 5.1 6.0 5.96
3 6.6 6.7 5.4 6.1 6.20
4 6.4 6.3 5.8 6.2 6.17
5 6.1 5.3 5.7 5.8 5.73
...

...
...

...
...

...
10 5.7 6.4 6.7 6.3 6.27
...

...
...

...
...

...
15 6.2 6.1 6.1 6.1 6.13
16 6.1 6.3 6.4 6.0 6.20
17 6.4 6.4 5.7 6.2 6.17
18 6.5 6.7 5.4 6.2 6.20
19 6.4 6.3 6.1 6.1 6.23
20 6.3 6.1 5.8 6.1 6.07

mean 6.07 6.06 6.05 6.06

One can observe that the mean (expectation) is roughly the same for t = 1, · · · , 20.
This could be done also for the variance and the autocorrelation function. This can
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be interpreted as E [Xt] = m for all t, etc. In practise, one only observes one set of
realizations for any particular series and multiple series of the same stochastic process
cannot be observed. At the same time, if (Xt) is a stationary series, the mean of each
column (i.e. the mean based on one series) should be close to the constant value reported
in the last column.

Appendix 2: Lag, Lead and first-difference operators
The lag, lead and first-difference (d-difference) operators are quite convenient in time se-
ries analysis. Notably, these operators can be used for notation. More importantly, lag
polynomial are generally used to characterize the main properties of linear time series
models, especially the class of ARMA or ARIMA models and their multivariate general-
ization (VAR or VECM models).

Lag operator The lag operator can be defined as follows.

Definition 16. The lag operator or backward (shift) operator, denoted by L, is an operator
that shifts the time index backward by one unit.

Examples:

1. Applying the backward operator to a variable at time t, say Xt, yields the value of
that variable at time t− 1:

LXt = Xt−1

2. Applying the backward operator twice (L2) amounts to lagging the variable twice:

L2Xt = L(LXt) = LXt−1 = Xt−2.

3. More generally,

LkXt = Xt−k

More formally, the lag operator transforms one time series, say

(Yt)t∈Z = (Y−∞, · · · , Y−1, Y0, Y1, · · · , Y+∞) ,

into another time series, say (Xt)t∈Z where:

Xt = Yt−1

Note that a constant can be viewed as a special series, namely:

(Yt)t∈Z

where Yt = c for all t. Therefore,

Lc = c.

Applications:
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• Consider an AR(1) process

Xt = ρXt−1 + εt

where εt is a weak white noise. Then it can be written as

Xt = ρLXt + εt ⇔ Xt − ρLXt = εt

⇔ (1− ρL)Xt = εt

⇔ φ(L)Xt = εt

where φ(L) is a lag polynomial of order one.

• Consider an ARMA(p,q) process

Xt = µ+ φ1Xt−1 + φ2Xt−2 + · · ·+ φpXt−p

+εt + θ1εt−1 + · · ·+ θqεt−q

= µ+

p∑
k=1

φkXt−k +

q∑
j=0

θjεt−j.

This can be written as:

Φ(L)Xt = µ+ Θ(L)εt

with Φ and Θ are some lag polynomials of order p and q, respectively:

Φ(L) = 1− φ1L− φ2L
2 − · · · − φpLp

Θ(L) = 1 + θ1L+ · · ·+ θqL
q

The lead operator The lead operator can be defined as follows.

Definition 17. The lead operator or forward (shift) operator, denoted by F , is an operator
that shifts the time index forward by one unit.

Examples:

1. Applying the forward operator to a variable at time t, say Xt, yields the value of
that variable at time t+ 1:

FXt = Xt+1

2. Applying the forward operator twice (F 2) amounts to leading the variable twice:

F 2Xt = F (FXt) = FXt+1 = Xt+2.

3. More generally,

F kXt = Xt+k

It is worth noting that (i) F = L−1 and (ii) F ◦ LXt = Xt.
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First-difference operator

Definition 18. The difference operator, denoted by ∆, is used to express the difference
between two consecutive realizations of a time series:

∆Xt = Xt −Xt−1

More generally, the differentiation of order k is defined by:

∆k = (1− L)k

Appendix 3: Stationarity, invertibility, infinite order mov-
ing average or autoregressive representation and ARMA
models
A non exhaustive list of properties of ARIMA(p,d,q) is provided below.

AR(p) models

Definition

An AR(p) model is defined to be

Φ(L)Xt = µ+ εt

where εt is a weak white noise, Φ(L) = 1−
∑p

j=1 φjL
j, µ is a constant term and φp 6= 0.

Stability and stationarity Stability and stationarity conditions always apply on the
autoregressive part of the stochastic process. In linear time series models, the "noise
component" is a linear combination of some weak white noise, and thus is always weakly
stationarity. Stability conditions are essential to avoid explosive solutions (e.g., bubbles)
or non-bounded solutions. On the other hand, stationary conditions are fundamental
since the order of integration matters for estimation, testing procedures, etc.17 As ex-
plained below, all of these conditions require to look at the autoregressive lag polynomial,
Φ(L) and to characterize its roots with either the characteristic equation or the inverse
characteristic equation.18

Stability requires that all roots of the characteristic equation (inverse characteristic equa-
tion) associated to Φ are of modulus less than one (larger than one):

• Characteristic equation

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| < 1 for i = 1, · · · , p.
17It is often tedious to make use of Definition 4.
18There is a nice theorem, which states that there is a correspondence between lag polynomials and

polynomials, meaning that studying the roots of a lag polynomial is more or less the same as determining
the roots of a polynomial of order p.
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• Inverse characteristic equation

Φ(z) = 0 ⇔ 1−
p∑
j=1

φjz
j = 0

⇔ |z∗i | > 1 for i = 1, · · · , p.

Stability implies stationarity.

There exists a (weakly) stationary solution if and only if all roots of the characteristic
equation (inverse characteristic equation) are of modulus different from one

• Characteristic equation

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| 6= 1 for i = 1, · · · , p.

• Inverse characteristic equation

Φ(z) = 0 ⇔ 1−
p∑
j=1

φjz
j = 0

⇔ |z∗i | 6= 1 for i = 1, · · · , p.

Fundamental representation The fundamental representation is also quite funda-
mental in time series analysis. Indeed, it insures that the error term can be interpreted as
the innovation at time t (kind of "exogeneity" assumption): this is helpful for estimation,
forecasting exercises, etc.

The representation of (Xt) is said to be fundamental if and only if all roots of the char-
acteristic equation (inverse characteristic equation) are of modulus less than one (larger
than one)

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| < 1 for i = 1, · · · , p.

In other words, the representation is fundamental if and only if (Xt) is stable. In this case,
(εt) is the innovation process of (Xt) and one obtains the infinite order moving average
representation

Xt =
µ

Φ(1)
+
∞∑
k=0

akεt−k

where a0 = 1,
∑∞

k=0 |ak| <∞, Φ(1) = 1−
∑p

j=1 φj.

Remark : If the representation is not fundamental but there exists a (weakly) stationary
solution, the infinite moving average representation writes

Xt =
µ

Φ(1)
+

∞∑
k=−∞

akεt−k

In this case, εt is not the innovation of Xt since (among others) E [εtXt−k] 6= 0 for k > 0.
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Moments Suppose that the representation is fundamental.

The unconditional mean is defined to be

E [Xt] =
µ

Φ(1)
.

In doing so, one solves the equation

E [Xt] = µ+

p∑
j=1

φjE [Xt−j] + E [εt]

or (using E [εt] = 0 and the notation E [Xt−j] ≡ mx for all j)

mx

(
1−

p∑
j=1

φj

)
= µ.

The autocovariance (autocorrelation) function satisfies a difference equation of order

p (Yule-Walker equation) for |h| ≥ p

γX(h)−
p∑
j=1

φjγX(h− j) = 0.

The roots of the characteristic equation are exactly the same as the ones characterizing
stability! If the roots are real and distinct, then the general solution is

γX(h) =

p∑
j=1

Cjz
h
j .

This requires p initial conditions (to obtain the Cj’s terms, j = 1, · · · , p), which are
provided by γX(0), · · · , γX(p−1). Then the fundamentalness of the representation implies
that the autocovariance function19 dies out as h→∞

γX(h) −→
h→∞

0.

Remark: The derivation of the Yule-Walker equation proceeds as follows

• In the presence of a constant term (µ 6= 0)

– Define the process in mean-deviation;

– Multiply by Xt −mX or X̃t and take the expectation on both sides;

– Repeat the previous step for h = 1, · · · , p− 1 (to get the initial conditions)

– Derive the general expression after multiplying by Xt−h −mX or X̃t−h.

• Without a constant term (µ = 0)
19This property can be understood using the infinite moving average representation
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– Multiply by Xt and take the expectation on both sides;
– Repeat the previous step for h = 1, · · · , p− 1 (to get the initial conditions)
– Derive the general expression after multiplying by Xt−h.

The partial autocorrelation function is defined by

aX(h)

{
6= 0 for 1 ≤ h ≤ p

0 for h > p.

An AR(p) is thus fully identified by its partial autocorrelation function. Moreover, one
has

aX(1) = ρX(1)

aX(p) = φp.

MA(q) models

Definition A MA(q) model is defined to be

Xt = µ+ Θ(L)εt

where εt is a weak white noise, Θ(L) = 1 +
∑q

j=1 θjL
j, µ is a constant term and θq 6= 0.

This can also be written as

Xt = µ+ Θ∗(L)εt

where εt is a weak white noise, Θ∗(L) = 1−
∑q

j=1 θ
∗
jL

j, µ is a constant term, θ∗q 6= 0 and
θ∗j = −θj for j = 1, · · · , q.

Stationarity and invertibility Stationary: A MA(q) is always (weakly) stationary
(as a finite linear combination of a weak white noise and its past).

Invertibility conditions always concern the moving average lag polynomial. It requires
that all roots of the characteristic equation (inverse characteristic equation) associate to
Θ are of modulus different from one20

zqΘ(z−1) = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |zi| 6= 1 for i = 1, · · · , q.

In practise, one often impose the stronger requirement (as in the course) that the roots of
the characteristic equation (inverse characteristic equation) associated to Θ are of modulus
less than one (larger than one) in order to get the fundamental representation

zqΘ(z−1) = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |zi| < 1 for i = 1, · · · , q.
20The inverse characteristic equation writes

Θ(z) = 0⇔ 1 +

q∑
j=1

θjz
j = 0.



4 Some linear time series models 23

Fundamental representation The representation of (Xt) is said to be fundamental if
and only if all roots of the characteristic equation (inverse characteristic equation) are of
modulus less than one (larger than one)

zqΘ(z−1) = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |zi| < 1 for i = 1, · · · , q.

In this case, (εt) is the innovation process of (Xt) and one obtains the infinite autoregres-
sive representation

Xt =
µ

Θ(1)
+
∞∑
k=1

bkXt−k + εt

where Θ(1) = 1 +
∑q

j=1 θj.

Remark : If the representation is not fundamental but there exists an invertible solu-
tion, the infinite order autoregressive representation writes

Xt =
µ

Θ(1)
+

∞∑
k=−∞

k 6=0

akXt−k + εt

In this case, εt is not the innovation of Xt.

Moments Suppose that the representation is fundamental.

The unconditional mean is defined to be

E [Xt] = µ.

The autocovariance (autocorrelation) function satisfies

γX(h) =



σ2
ε

(
1 +

q∑
i=1

θ2i

)
if h = 0

σ2
ε

(
θh +

q∑
i=h+1

θiθi−h

)
if 1 ≤ |h| < q

θqσ
2
ε if |h| = q

0 if |h| > q

The partial autocorrelation function satisfies21

aX(h) −→
h→∞

0.

A MA(q)) is thus fully identified by its autocorrelation function.
21This can be understood using the infinite autoregressive representation.
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ARMA(p,q) models

Definition

An ARMA(p,q) model is defined to be

Φ(L)Xt = µ+ Θ(L)εt

where εt is a weak white noise, Φ(L) = 1−
∑p

j=1 φjL
j, Θ(L) =

∑q
k=0 θkL

k (with θ0 = 1),
µ is a constant term, φp 6= 0 and θq 6= 0.

Stability, stationarity, and invertibility The stability and stationary conditions are
the same as the ones of an AR(p). The invertibility conditions are the same as the ones
of a MA(q).

Stability requires that all roots of the characteristic equation (inverse characteristic equa-
tion) associated to Φ are of modulus less than one (larger than one):

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| < 1 for i = 1, · · · , p.

Stability implies stationarity.

There exists a (weakly) stationary solution if and only if all roots of the characteristic
equation (inverse characteristic equation) are of modulus different from one

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| 6= 1 for i = 1, · · · , p.

Invertibility requires that all roots of the characteristic equation (inverse characteristic
equation) associate to Θ are of modulus different from one:

zqΘ(z−1) = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |z̃i| 6= 1 for i = 1, · · · , q.

In practise, one often impose the stronger requirement (as in the course) that all roots of
the characteristic equation (inverse characteristic equation) associated to Θ are of modulus
less than one (larger than one) in order to get the (minimal) fundamental representation

zqΘ(z−1) = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |z̃i| < 1 for i = 1, · · · , q.

Minimal and fundamental representation The representation of (Xt) is said to be
minimal and fundamental if and only if

1. All roots of the characteristic equation (inverse characteristic equation) associated
to Φ are of modulus less than one (larger than one)

zpΦ(z−1) = 0 ⇔ zp − φ1z
p−1 − · · · − φp−1z − φp = 0

⇔ |zi| < 1 for i = 1, · · · , p.
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2. All roots of the characteristic equation (inverse characteristic equation) associated
to Θ are of modulus less than one (larger than one) in order to get the (minimal)
fundamental representation

zqΘ(z−1 = 0 ⇔ zq + θ1z
q−1 + · · ·+ θq−1z + θq = 0

⇔ |z̃i| < 1 for i = 1, · · · , q.

3. The two characteristic equations have no common roots.

In particular, (εt) is the innovation process of (Xt). Using the minimal and fundamental
representation, one obtains two equivalent representations

1. The infinite moving average representation

Xt =
µ

Φ(1)
+
∞∑
k=0

ckεt−k

where c0 = 1,
∑∞

k=0 |ck| <∞, Φ(1) = 1−
∑p

j=1 φj.

2. The infinite autoregressive representation

Xt =
µ

Θ(1)
+
∞∑
k=1

dkXt−k + εt

where Θ(1) = 1 +
∑q

j=1 θj.

Moments Suppose that the representation is fundamental.

The unconditional mean is defined to be (as in the case of an AR(p))

E [Xt] =
µ

Φ(1)
.

The autocovariance (autocorrelation) function satisfies a difference equation of order

p (Yule-Walker equation) for |h| ≥ max(q + 1, p)

γX(h)−
p∑
j=1

φjγX(h− j) = 0.

The roots of the characteristic equation are exactly the same as the ones characterizing
stability! If the roots are real and distinct, then the general solution is

γX(h) =

p∑
j=1

Djz
h
j .

This requires p initial conditions (to obtain the Dj’s terms), which are provided by
γX(0), · · · , γX(p − 1). Then the fundamentalness of the representation implies that the
autocovariance function22 dies out as h→∞

γX(h) −→
h→∞

0.

22This property can be understood using the infinite order moving average representation of an
ARMA(p,q).
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Remark: The initial conditions are different from the ones of an AR(p) (even if the
difference equation is the same)! The partial autocorrelation function satisfies23

aX(h) −→
h→∞

0.

An ARMA(p,q) cannot be fully identified by its partial autocorrelation function or its
autocorrelation function.

ARIMA(p,d,q)

This section is not for the midterm!

Definition A stochastic process (Xt)t≥−p−d is an autoregressive integrated moving av-
erage model if it satisfies the following equation:

Φ(L)(1− L)dXt = µ+ Θ(L)εt ∀t ≥ 0

where εt is a (weak) white noise process with variance σ2
ε , the lag polynomials are given

by:

Φ(L) = 1− φ1L− · · · − φpLp with φp 6= 0

Θ(L) = 1 + θ1L+ · · ·+ θqL
q with θq 6= 0,

and the initial conditions:

Z−1 = {X−1, · · · , X−p−d, ε−1, · · · , ε−q}

are such that:

Cov(εt, Z−1) = 0 ∀t ≥ 0.

Remark: Initial conditions matter!

Properties Broadly speaking, the properties (stability, stationarity and invertibility of
the d-differenced process) are the same as the ones of an ARMA(p,q) (see below). This
is also the case for the minimal and fundamental representation.

Equivalence with ARMA(p,q) Let (Xt)t≥−p−d denote a minimal causalARIMA(p, d, q)
stochastic process:

Φ(L)(1− L)dXt = µ+ Θ(L)εt.

The stochastic process defined by:

Yt = ∆dXt = (1− L)dXt

is asymptotically equivalent to an ARMA(p, q) process.
23This can be understood using the infinite order autoregressive representation of an ARMA(p,q).
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