
Master in Financial Engineering (EPFL)

Financial Econometrics

Some elements of correction: GARCH models

Exercise 1: Let (Xt) ∼ GARCH(p, q) such that

Xt = σtZt

Zt ∼ i.i.d. N (0, 1)

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j

where the usual conditions on the parameters hold true.

1. The result is straightforward since σ2
t does depend on past values that are known

given the information set It−1 and Z2
t ∼ χ2(1) (with unconditional expectation 1).

2. One has

σ2
t = X2

t − ηt

and

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j.

Therefore

X2
t − ηt = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βj
(
X2
t−j − ηt−j

)
.

Consequently, if p > q, then:

X2
t = ω +

q∑
i=1

(αi + βi)X
2
t−i +

p∑
j=q+1

αiX
2
t−i + ηt −

q∑
i=1

βiηt−i.

Otherwise (if q > p):

X2
t = ω +

p∑
i=1

(αi + βi)X
2
t−i +

q∑
j=p+1

βiX
2
t−i + ηt −

q∑
i=1

βiηt−i.

Finally,

X2
t = ω +

r∑
i=1

(αi + βi)X
2
t−1 + ηt −

q∑
j=1

βjηt−j.

where r = max {p, q}, αi = 0 if i > p, and βj = 0 if j > q.
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3. It follows that (X2
t ) ∼ ARMA(r, q) [...]

Exercise 2: Let (Xt) ∼ GARCH(1, 1) such that

Xt = σtZt

σ2
t = ω + αX2

t−1 + βσ2
t−1

where Zt ∼ i.i.d.N (0, 1), ω > 0, α ≥ 0 and β ≥ 0 (with α+β < 1). We further assume
that 1− 3α2 − β2 − 2αβ > 0.

1. (X2
t ) has the following ARMA(1, 1) representation (see Exercise 1):

X2
t − (α + β)X2

t−1 = ω + vt − βvt−1

where vt = X2
t −E [X2

t | Xu, u < t] is a (weak) white noise. Consequently, using the
results of Lecture 4 part 2.b and exercise session 5, the autocorrelation function of
(X2

t ) satisfies, for all h > 1:

ρX2(h) = (α + β)ρX2(h− 1).

It remains determining the first two autocovariances. This can be done by using the
infinite order moving average representation. Indeed, one has

X2
t =

ω

1− α− β
+ vt + α

∞∑
i=1

(α + β)i−1vt−i.

and

γX2(0) =

(
1 + α2

∞∑
i=1

(α + β)2(i−1)

)
E
[
v2t
]

=

(
1 +

α2

1− (α + β)2

)
E
[
v2t
]

γX2(1) =

(
α + α2(α + β)

∞∑
i=1

(α + β)2(i−1)

)
E
[
v2t
]

=

(
α +

α2(α + β)

1− (α + β)2

)
E
[
v2t
]
.

where

E
[
v2t
]

= E
[(
X2
t − σ2

t

)2]
= E

[(
Z2
t − 1

)2]× E
[
σ4
t

]
= 2E

[
σ4
t

]
with E [σ4

t ] satisfying the following relationship

E
[
σ4
t

]
= E

[
(ω + αX2

t−1 + βσ2
t )

2
]

= ω2 + 3α2E
[
σ4
t

]
+ β2E

[
σ4
t

]
+ 2ω(α + β)E

[
σ2
t

]
+ 2αβE

[
σ4
t

]
and thus

E
[
σ4
t

]
=

ω2(1 + α + β)

(1− α− β)(1− 3α2 − β2 − 2αβ)
.

Finally, the first autocorrelation is then ρX2(1) = α(1−β2−αβ)
1−β2−2αβ .
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Exercise 3:

1. One could test (say, at 5% significance level)

H0 : α1 = 0

Ha : α1 6= 0

Note that the alternative hypothesis can be written as Ha : α1 > 0 (taking into
account the parametric restriction of an ARCH(1) model). One can use any ML-
based test (e.g., Wald test).

2. One key issue is to determine an estimate of the asymptotic variance-covariance
matrix of the ML estimator (of α1). This can be achieved as follows. First, note
that the log-likelihood function is given by:

`(θ | {rt, t = 2, · · · , T} = −1

2

T∑
t=2

{
ln(2π) + ln(σ2

t )−
r2t
σ2
t

}
where

σ2
t = 0.0001 + α1r

2
t−1.

It follows that

• The first-order derivative is given by:

d`

dα1

(.) = −1

2

{
T∑
t=2

r2t−1
σ2
t

−
T∑
t=2

r2t
σ4
t

r2t−1

}
• The second-order derivative is given by:

d2`

dα2
1

(.) =
T∑
t=2

r4t−1
2σ4

t

−
T∑
t=2

r2t r
4
t−1

σ6
t

.

Using an estimate of the second-order derivative, one gets:

d2`

dα2
1

(.)|α1=α̂1 = −1606.032

It follows that an estimate of the asymptotic variance-covariance matrix is given by:

−
[
d2`

dα2
1

(.)|α1=α̂1

]−1
= − 1

−1606.032
= 0.00062

Accordingly,

α̂1
a∼ N (0, 0.00062).

or alternatively

α̂1√
0.00062

a∼ N (0, 1).

It is straightforward to show that one can reject the null hypothesis at 5%.
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3. Using Appendix 1, one has

VaRT+1
90% = −

√
0.0001 + 0.3577× (−0.00066)2 × (−1.282) = 0.0128

VaRT+1
95% = −

√
0.0001 + 0.3577× (−0.00066)2 × (−1.645) = 0.0165

VaRT+1
99% = −

√
0.0001 + 0.3577× (−0.00066)2 × (−2.326) = 0.0233

Exercise 4:

1. Using Appendix 1, the GARCH(1,1)-based VaR forecast at date T + 1 is (minus)
the αth quantile of the conditional distribution of rT+1 | rT . In a GARCH(1,1)
specification, one has

rT+1 | rT ∼ N
(
0, ω + α1r

2
T + β1σ

2
T

)
.

Accordingly,

VaRT+1
1−α = −αthquantile of N

(
0, ω + α1r

2
T + β1σ

2
T

)
= −

√
ω + α1r2T + β1σ2

T × zα

where zα is the quantile of order α of standard normal random variable. Using the
estimates, one gets

VaRT+1
90% = 0.0078

VaRT+1
95% = 0.0100

VaRT+1
99% = 0.0141

2. Using the historical simulations method, one determines the quantile of order 0.1
using the data set of 20 observations. In so doing, one needs to find the position of
this quantile (in the order sample) : (n + 1) × α where n = 20 is the sample siez
and α the quantile order. The corresponding position is 2.1
Using a standard rule of thumb (i.e., the simple average of the adjacent values
(corresponding to the position 2 and 3), one gets:

VaRHS,T+1
90% = −−0.00351− 0.00317

2
= 0.00334

Exercise 5: Let (εt) ∼ GARCH(1, 1) such that

εt = σtZt

σ2
t = ω + αε2t−1 + βσ2

t−1

where Zt ∼ i.i.d.N (0, 1), ω > 0, α ≥ 0 and β ≥ 0 (with α + β < 1).
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1. By definition, the one-step ahead forecast of σ2
t is given by:

σ2
t (1) = ω + αε2t + βσ2

t .

Using the expression of the conditional variance at time t+ 2

σ2
t+2 = ω + (α + β)σ2

t+1 + ασ2
t+1(Z

2
t+1 − 1),

the two-step ahead forecast of the conditional variance is given by:

E
[
σ2
t+2 | It

]
= ω + (α + β)E

[
σ2
t+1 | It

]
+αE

[
σ2
t+1(Z

2
t+1 − 1) | It

]
i.e.

σ2
t (2) = ω + (α + β)σ2

t (1)

since E
[
σ2
t+1(Z

2
t+1 − 1) | It

]
= 0. More generally, using

σ2
t+h = ω + (α + β)σ2

t+h−1 + ασ2
t+h−1(Z

2
t+h−1 − 1),

the h-step ahead forecast of the conditional variance is given by:

E
[
σ2
t+h | It

]
= ω + (α + β)E

[
σ2
t+h−1 | It

]
+αE

[
σ2
t+h−1(Z

2
t+h−1 − 1) | It

]
i.e.

σ2
t (h) = ω + (α + β)σ2

t (h− 1)

since E
[
σ2
t+h−1(Z

2
t+h−1 − 1) | It

]
= 0. Then, by backward substitution, one obtains

σ2
t (h) =

ω
(

1− (α + β)h−1
)

1− (α + β)
+ (α + β)h−1 σ2

t (1)

with

σ2
t+1 ≡ σ2

t (1) = ω + αε2t + βσ2
t .

2. As h→∞, one has:

σ2
t (h) →

h→∞

ω

1− (α + β)

This is the unconditional variance of ε2t .

3. Suppose now that one considers an AR(1) process with GARCH(1,1) error terms:

Xt = φXt−1 + εt

εt = σtZt

σ2
t = ω + αε2t−1 + βσ2

t−1

where |φ| < 1.
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3.1. Find V [Xt+h | Xu, u < t] if φ2 6= α + β (respectively, φ2 = α + β)).
One has

V [Xt+h | Xu, u < t] = V

[
h∑
i=0

φh−iεt+i | εu, u < t

]

=
h∑
i=0

φ2(h−i)V [εt+i | εu, u < t] .

Using the result of Question 1, if φ2 6= α + β, one has:

V [Xt+h | Xu, u < t] =
ω

1− (α + β)

(
h∑
i=0

φ2(h−i)

)

+

(
σ2
t −

ω

1− (α + β)

) h∑
i=0

(α + β)iφ2(h−i)

=
ω
(
1− φ2(h+1)

)
(1− (α + β))(1− φ2)

+

(
σ2
t −

ω

1− (α + β)

)
φ2(h+1) − (α + β)h+1

φ2 − (α + β)
.

If φ2 = α + β, then

V [Xt+h | Xu, u < t] =
ω
(
1− φ2(h+1)

)
(1− φ2)2

+

(
σ2
t −

ω

1− (α + β)

)
(h+ 1)φ2h.

3.2. The term σ2
t − ω

1−(α+β) captures the difference between the conditional and the
unconditional variance of the error terms. The coefficient of this term always
being positive, the variance of the prediction at horizon h increases linearly with
respect to the difference between the conditional and unconditional variance.
In this respect, a large negative difference (e.g., in the case of a low-volatility
period) will lead to more accurate predictions. In contrast, it will tend to
deteriorate when σ2

t is large. Finally, as h→∞, the contribution of this factor
decreases and one retrieves the unconditional variance of Xt:

lim
h→∞

V [Xt+h | Xu, u < t] =
V(εt)

1− φ2
.

3.3. If | φ |= 1 and the process is initialized at 0, one has

V [Xt+h | Xu, u < t] =
ω(1 + h)

(1− (α + β))
+

(
σ2
t −

ω

1− (α + β)

)
1− (α + β)h+1

1− (α + β)
.

In contrast to the previous question, the impact of the observations (before
time t) does not vanish as h increases (second right-hand side term). However,
this term is dominated (and thus becomes negligible) by the deterministic part
(first right-hand side term) which is proportional to h.
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Exercise 6:

1. Comment the different specifications: See Lecture Notes

2. Some comments:

– All models are (weakly) stationary.

– GARCH: (usual interpretation of α and β). The variance and kurtosis in the
estimated model are respectively given by 1.3 × 10−4 and 3.49. Given the
ARMA(1, 1) representation, one has (see Exercise 2!)

ρε2(h) = (α + β)ρε2(h− 1).

Since α̂ + β̂ ' 0.93, there is a slow decay of the autocorrelation function.

– EGARCH: Since the estimate of θ is negative, there is the presence of the leverage
effect. This is also true for the QGARCH (negative sign of the coefficient estimate
of εt−1) and the GJR-GARCH model (negative sign of the coefficient estimate of
Π−t−1ε

2
t−1).

– The TGARCH model also displays the leverage effect. The term ω/(1−β) can be
interpreted as the "minimal volatility" after assuming that all the innovations
are equal to zero. The estimates of α1 and α2 represent the impact of the last
observation (after controlling the sign) on the current volatility. Notably, the
effect of a negative value is 3.5 more than a positive value. The last coefficient,
which captures the importance of the last volatility, [...]

3. Some comments

– Note that the log-likelihood value of the GARCH(1, 1) cannot be compared di-
rectly with that of other models since it has one parameter less!

– The asymmetric GARCHmodels can be compared (they all have five parameters).

– The largest value is observed for the GJR-GARCH model.

– However, the difference (in terms of `) between these asymmetric models is so
small, that it is not so clear which model is really better (superior) than the
others;

– Log-likelihood ratio tests [...]


