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Exercises: GARCH models

Exercise 1: Let (Xt) ∼ GARCH(p, q) such that

Xt = σtZt

Zt ∼ i.i.d. N (0, 1)

σ2
t = ω +

p∑
i=1

αiX
2
t−i +

q∑
j=1

βjσ
2
t−j

where the usual conditions on the parameters hold true.

1. Let ηt denote ηt = σ2
t (Z

2
t − 1). Show that E [ηt | It−1] = 0 where It−1 is the infor-

mation set at time t− 1.

2. Using the previous result and the representation of a GARCH(p, q), show that the
stochastic process (X2

t ) has the following representation:

X2
t = ω +

r∑
i=1

(αi + βi)X
2
t−i + ηt −

q∑
j=1

βjηt−j.

where r = max {p, q}, αi = 0 if i > p, and βj = 0 if j > q.

3. Interpret the previous result.

Exercise 2: Let (Xt) ∼ GARCH(1, 1) such that

Xt = σtZt

σ2
t = ω + αX2

t−1 + βσ2
t−1

where Zt ∼ i.i.d.N (0, 1), ω > 0, α ≥ 0 and β ≥ 0 (with α+β < 1). We further assume
that 1− 3α2 − β2 − 2αβ > 0.

1. Find the autocovariance and autocorrelation function of (X2
t ).
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Exercise 3: Daily log returns of the S&P500 index (during the period 1993-2013), de-
noted r1,· · · ,rT with T = 5248, are assumed to follow an ARCH(1) specification:

rt = σtzt t ≥ 2

σ2
t = 0.0001 + α1r

2
t−1

where zt ∼ i.i.d.N (0, 1). The maximum likelihood estimate of α1 is 0.3577. In addition,
T∑
t=2

r4t−1
2σ4

t

= 1757.807

T∑
t=2

r2t r
4
t−1

2σ6
t

= 3363.839

1. How would you test the presence of an ARCH(1) effect?

2. Using the available information, estimate the asymptotic variance associated with
the ML estimate of α1 and provide a test statistic. What is your conclusion?

3. The last observation available in the dataset is rT = −0.00066. Using Appendix 1,
provide the following VaR forecasts at date T + 1:

• VaRT+1
90%

• VaRT+1
95%

• VaRT+1
99%

Exercise 4: Daily log returns of the S&P500 index (during the period 1993-2013), de-
noted r1,· · · ,rT with T = 5248, are assumed to follow a GARCH(1,1) specification:

rt = σtzt t ≥ 2

σ2
t = 0.0000013 + 0.08184r2t−1 + 0.90897σ2

t−1

where zt ∼ i.i.d.N (0, 1). The last observation available in the dataset is rT = −0.00066
and σ2

T = 0.000039.

1. Using Appendix 1, provide the following GARCH(1,1)-based VaR forecasts at date
T + 1:

• VaRT+1
90%

• VaRT+1
95%

• VaRT+1
99%

2. Taking that the last 20 day log-returns available in the dataset are (in increasing
order):

−0.01272,−0.00351,−0.00317,−0.00313,−0.00218,−0.0023,−0.00100,−0.00066

0.00017, 0.00028, 0.00239, 0.00243, 0.00351, 0.00434, 0.00498, 0.00499, 0.00509

0.00799, 0.00804, 0.01340

Provide the 90% value-at-risk forecast at date T + 1 using the 20-day historical
simulation method.
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Exercise 5: Let (εt) ∼ GARCH(1, 1) such that

εt = σtZt

σ2
t = ω + αε2t−1 + βσ2

t−1

where Zt ∼ i.i.d.N (0, 1), ω > 0, α ≥ 0 and β ≥ 0 (with α + β < 1).

1. Show that the h-step ahead forecast of the conditional variance (at time t), denoted
σ2
t (h), is given by (see also Case Study 2):

σ2
t (h) =

ω
(
1− (α + β)h−1

)
1− (α + β)

+ (α + β)h−1 σ2
t (1).

where σ2
t (1) is the one-step ahead forecast of the conditional variance.

2. What happens as h→∞? Interpret (see also Case Study 2).

3. Suppose now that one considers an AR(1) process with GARCH(1,1) error terms:

Xt = φXt−1 + εt

εt = σtZt

σ2
t = ω + αε2t−1 + βσ2

t−1

where |φ| < 1.

3.1. Find V [Xt+h | Xu, u < t] if φ2 6= α + β (respectively, φ2 = α + β)).
3.2. Interpret the previous result.
3.3. What would happen if | φ |= 1 and the process is initialized at 0 (i.e., all the

variables at negative dates are initialized at zero)? Explain.

Exercise 6: Standard GARCH models have the symmetry property. Indeed, if the law
of ηt is symmetric (and as long as the GARCH(p, q) is second-order stationary), there is
absence of covariance between σt and εt−h, Cov(σt, εt−h) = 0 for h > 0. Furthermore, let
ε+t and ε−t denote the positive and negative components of εt (for all t), respectively:

ε+t = max {εt, 0} and ε−t = min {εt, 0} .

It can be shown that the property, Cov(σt, εt−h) = 0 for h > 0, is true if and only
if Cov(ε+t , εt−h) = Cov(ε−t , εt−h) = 0 for h > 0. However, this characterization of the
symmetry property using the autocovariance function is in general rejected on financial
series. In this respect, asymmetric GARCH models have been proposed in the literature.
Based on (weekly) CAC40 index returns, one estimates the following symmetric and
asymmetric GARCH models (see Lecture notes):

• GARCH(1, 1) model:

rt = µ+ εt

εt = σtzt, zt ∼ i.i.dN (0, 1)

σ2
t = ω + αε2t−1 + βσ2

t−1
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• EGARCH(1, 1) model:

rt = µ+ εt

εt = σtzt, zt ∼ i.i.dN (0, 1)

log(σ2
t ) = ω + α

(
θzt + γ

[
|zt| −

√
2

π

])
+ β log(σ2

t−1)

• QGARCH(1, 1) model:

rt = µ+ εt

εt = σtzt, zt ∼ i.i.dN (0, 1)

σ2
t = ω + αε2t−1 + φεt−1 + βσ2

t−1

• GJR-GARCH(1, 1) model:

rt = µ+ εt

εt = σtzt, zt ∼ i.i.dN (0, 1)

σ2
t = ω +

[
αε2t−1 + γΠ−t−1ε

2
t−1
]

+ βσ2
t−1

where Π−t equals one if εt < 0, and 0 otherwise.

• TGARCH(1, 1) model:

rt = µ+ εt

εt = σtzt, zt ∼ i.i.dN (0, 1)

σt = ω +
[
α1ε
−
t−1 + α2ε

+
t−1
]

+ βσt−1

Note that the last equation of a TGARCH model can also be written as:

σt = ω +
[
γ1|εt−1|+ γ2Π

−
t−1|εt−1|

]
+ β1σt−1

where Π−t equals one of εt < 0, and 0 otherwise.

On obtains the following estimations. All coefficients are statistically different from zero.
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Table 1: Symmetric and asymmetric GARCH models
GARCH EGARCH QGARCH GJR-GARCH TGARCH

µ 5× 10−4 4× 10−4 3× 10−4 4× 10−4 4× 10−4

ω 8× 10−6 -0.640 9× 10−6 1× 10−5 8× 10−4

α 0.090 0.149 0.070 0.130

β 0.840 0.850 0.850 0.840 0.870

θ -0.530

γ 1 -0.100

φ −8× 10−4

α1 -0.120

α2 0.030

1. Comment the different specifications.

2. Provide an interpretation of the estimated coefficients.

3. The value of the log-likelihood function is given in Table 2. Which model would you
suggest to use? Explain carefully.

Table 2: Log-likelihhod values
of symmetric and asymmetric GARCH models

GARCH EGARCH QGARCH GJR-GARCH TGARCH
` 6392 6406 6406 6410 6408
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Appendix 1: Value-at-Risk
Consider a portfolio of n assets with fixed allocation a = (a1, · · · , an)> between t and
t + h. At date t, the investor’s endowment: Wt(a) = a>pt is allocated between portfolio
choice (at time t + h) and a reserve, Rt. Especially, Rt is chosen such that the global
position (portfolio value + reserve) corresponds to a loss with a predetermined (small)
probability at date t+ h:

Pt [Wt+h(a) +Rt<0] = α

⇒ −Rt is the α-quantile of the conditional distribution of future portfolio value (P&L
distribution). In this respect, the required capital is (theoretically) the Value-at-Risk
(VaR) denoted by

VaRt = Wt(a) +Rt

and is characterized by the condition

Pt [Wt+h(a)−Wt(a) + VaRt < 0] = α.

Therefore, the VaR depends on the information available at time t, the horizon h, the
portfolio (set of assets and allocation), and the loss probability α:

VaRt = VaR(It, a, h, α)

and has (at least) two objectives: (1) To measure the risk and (2) To determine the capital
reserve.
Example 1: Interpretation of VaR

• Suppose the daily VaR of a trading portfolio is 5’000’000 at the 99% confidence level.

• There is 1 chance in 100 that a loss > 5m (USD) will occur the next day (under
normal market conditions).

• The VaR is the 1%-quantile of the probability distribution of the position. �

Example 2: Gaussian (conditional) VaR

• Suppose h = 1 and ∆pt ∼ N (µt,Ωt) where µt = Et [∆pt] and Ωt = Vt [∆pt].

• The (conditional) VaRt satisfies (for a loss probability α):

Pt
[
a>∆pt < −VaRt

]
= α

or, equivalently,

P

[
Zt <

−VaRt − a>µt
(a>Ωta)1/2

]
= α.

where Zt ∼ N (0, 1).
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• Therefore

VaRt = −a>µt −
(
a>Ωta

)1/2
zα

= −a>µt +
(
a>Ωta

)1/2
z1−α

where z1−α is the (1− α)-quantile of a standard normal distribution. �

Different methods have been proposed to estimate the conditional VaR. We focus here on
parametric methods to provide value-at-risk forecasts at date T + 1. Suppose that the
information set is given by It = {xt, xt−1, · · · }

notation
= xt−1 and

xt = m(xt−1, θ) + σ(xt−1, θ)vt

where Et−1 [xt] = m(xt−1, θ) and Vt−1 [xt] = σ2(xt−1, θ) depend on parameter θ, and vt
denote some i.i.d. error terms. The vector of parameters, denoted θ, can be estimated
by maximum likelihood:

θ̂T = Argmax
θ

− 1

2

T∑
t=1

lnσ2(xt−1, θ) +

(
xt −m(xt−1, θ)

)2
σ2(xt−1, θ)

 .

Taking the estimate of θ, one can find approximation (estimates) of the conditional drift,
m̂T = m(., θ̂T ), the conditional variance σ̂2

T = σ2(., θ̂T ) and the standardized residuals, v̂t.
Especially,

• At horizon 1, the (theoretical) conditional VaR is defined by

Pt [xt+1 < VaRt(a, α, 1)] = α

or, equivalently,

Pt

[
vt < −

VaR(a, α, 1)−m(xt−1, θ)

σ(xt−1, θ)

]
= α.

An estimate of the conditional VaR is then

V̂aRt(a, α, 1) = −m̂T + σ̂TF
−1(1− α)

where F is the cdf of (i.i.d.) error terms vt.

Example 3: Suppose that the log returns follow an ARCH(1) process (with Gaussian
error terms)

rt = σtεt

σ2
t = ω + α1r

2
t−1

and xt = art ≡ a∆pt with

xt ∼ N
(
0, a2

(
ω + α1r

2
t−1
))
.
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The conditional VaR is minus the α-quantile of a N
(
0, a2

(
ω + α1r

2
t−1
))

or its (1 − α)-
quantile:

VaR(a, α, 1) = −a
√
ω + α1r2t−1zα

= a
√
ω + α1r2t−1z1−α

where zα is the α-quantile, F−1(α), of a N (0, 1) (e.g., z0.1 = −1.282, z0.05 = −1.645, or
z0.01 = −2.326).


