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Exercise 1
The main objective of this exercise is to get a suitable model for a given log-return using
daily information. In so doing, one considers the following four specifications.

• Model 1: Constant model

rt = µ+ εt

where εt is a weak white noise with expectation zero and with variance σ2
ε .1

• Model 2: AutoRegressive process of order 1—AR(1)

rt = µ+ φrt−1 + εt

where | φ |< 1 and εt is a weak white noise with expectation zero and variance σ2
ε .

• Model 3: AutoRegressive and Conditionnally Heteroskedastic process of order p—
ARCH(p):

rt = µ+ εt

εt = σtZt

σ2
t = ω +

p∑
i=1

αiε
2
t−i

where Zt ∼ i.i.d.N (0, 1).

• Model 4: Generalized AutoRegressive and Conditionnally Heteroskedastic process
of orders p and q—GARCH(p,q):

rt = µ+ εt

εt = σtZt

σ2
t = ω +

p∑
i=1

αiε
2
t−i +

q∑
j=1

βjσ
2
t−j

where Zt ∼ i.i.d.N (0, 1).
1The stochastic process (εt)t is said to be a weak white noise if (i) E [εt] = 0 for all t, (ii) V [εt] = σ2

ε <
+∞ for all t, and (iii) Cov [εt, εt′ ] = 0 when t 6= t′.
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Using the excel file, data_case_study_2_epfl_2019.xls, pick one stock at random and
answer the following questions.

• Part I:

1.1. Provide an OLS estimation of Model 1.

1.2. Plot the residuals. What do you observe? Is it consistent with stylized facts
of Lecture 1?

• Part II:

2.1. Plot the autocorrelation function and the partial autocorrelation function of rt
for k = 1, · · · , 20.

2.2. Using the results of the previous question, does it make sense to consider an
autoregressive process of order 1. Explain carefully.

2.3. Provide an OLS estimation of Model 1 (OLS estimates, standard errors, p-
values) and interpret the results.

• Part III:

3.1. Plot the autocorrelation function of the squared (demeaned)log-return for k =
1, · · · , 20. Interpret the results. Notably, What does the squared (demeaned)
log-return capture? Is it consistent with some of the stylized facts of Lecture
1?

3.2. Interpret the different equations of Model 3.

3.3. Estimate the ARCH(1) specification.

∗ Interpret the results.
∗ Plot the residuals (ε̂t) and the standardized (or filtered) residuals (ε̂t/σ̂t)

and their corresponding empirical distributions. Interpret the different
results.

3.4. Proceed as in Question 3.3. with p = 4 and 10. Interpret the results. Notably,
what happens when the number of lags increases?

• Part IV:

4.1. Interpret the different equations of Model 4.

4.2. Compute the EWMA-based variance of the log-return using a fixed window of
90 days:

σ2
t = 0.94× σ2

t−1 + 0.06r2t

where σ2
0 is the (empirical) variance of the log-return for the first 90 observa-

tions.

4.3. Provide an ML-based estimation of a GARCH(1,1) specification.

∗ Interpret the estimation results. What is the unconditional volatility?
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∗ How does it compare with the results of Question 4.2.?
∗ Plot the residuals (ε̂t) and the standardized (or filtered) residuals (ε̂t/σ̂t)

and their corresponding empirical distributions. Interpret the different
results.

4.4. Proceed as in Question 4.3. with p = 3 and q = 3. Interpret the results.
Notably, what happens when the number of lags for p and q increases?

• How can one use all of the information of this exercise?

Exercise 2: Term structure of volatility
The main goal of this exercise is to determine the volatility term structure using the
information provided in the Excel file Term_structure_of_volatility_epfl_2019.xls
In so doing, consider the simple return model with GARCH(1,1) error terms

rt = µ+ εt

εt = σtzt

σ2
t = ω + α1ε

2
t−1 + β1σt−1

where zt ∼ i.i.d.N (0, 1), ω > 0, α1 ≥ 0, β1 ≥ 0 and α+ β1 < 1. It is worth noting that
:

E [εt+h | ετ , τ < t] = E
[
E
[
εt+h | εt+h−1

]
| ετ , τ < t

]
= 0

and

E
[
ε2t+h | ετ , τ < t

]
= E

[
σ2
t+h | ετ , τ < t

]
or equivalently

E
[
ε2t+h | Iτ , τ < t

]
= E

[
σ2
t+h | Iτ , τ < t

]
.

In the sequel, the h-step ahead forecast of σ2
t given the information available at period t

is denoted:

E
[
σ2
t+h | It−1

]
≡ Et−1

[
σ2
t+h

]
≡ σ2

t+h|t−1.

Determination of forward variance forecasts

The term structure of (daily) volatility is determined by using the (daily) forward variance
forecasts {

σ2
t|t−1, σ

2
t+1|t−1, · · · , σ2

t+h|t−1
}
.

Show that

• The h-step ahead forecast of the conditional variance is defined by the relationship
(for all h ≥ 1):

Et−1
[
σ2
t+h

]
= ω + (α1 + β1)Et−1

[
σ2
t+h−1

]
or, equivalently,

Et−1
[
σ2
t+h

]
= ω

1− (α1 + β1)
h

1− (α1 + β1)
+ (α1 + β1)

h σ2
t .
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• The best conditional forecast as h→∞ is given by

Et−1
[
σ2
t+h

]
→
h→∞

σ̄2 =
ω

1− α1 − β1
.

Determination of the cumulative forward variance

Taking the (daily) forward variance forecasts, determine the average volatility over the
next h days (assuming that there are 252 trading days).

Application

Using the Excel file, and especially the financial series FTSE100 over the period Dec. 31,
2003- August 29, 2007:

• Provide some descriptive statistics of the corresponding (log-) return;

• Compute the EWMA volatility;

• Estimate a GARCH(1,1) model;

• Compute the forward variance (forecast of conditional variances for different hori-
zons);

• Calculate the cumulative forward variance and plot the corresponding term structure
of volatility;

• Compare the previous results with those of a constrained GARCH(1,1) model (i.e.,
after imposing a long-term volatility constraint).


