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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical classification by deep networks

Objectives for today:

- The cross-entropy error is the optimal 

loss function for classification tasks

- The sigmoidal (softmax) is the optimal 

output unit for classification tasks

- Multi-class problems and ‘1-hot coding’

- Under certain conditions we may interpret the

output as a probability

- The rectified linear unit (RELU) for hidden layers

Reading for this lecture:

Bishop 2006, Ch. 4.2 and 4.3

Pattern recognition and Machine Learning

or

Bishop 1995, Ch. 6.7 – 6.9 

Neural networks for pattern recognition

or

Goodfellow et al.,2016 Ch. 5.5, 6.2, and 3.13 of

Deep Learning
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Miniproject1: soon!

You will work with

- regularization methods

- cross-entropy error function

- sigmoidal (softmax) output

- rectified linear hidden units

- 1-hot coding for multiclass

- batch normalization

- Adam optimizer

This week

Next week

(see last week)

Previous slide.

Miniprojects must be done in groups of two students. Not one, not three.

The notions you need for the miniproject are introduced in parallel over the next two 

weeks, but you should start as soon as possible.
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Review: Data base for Supervised learning (single output) 

input

car =yes

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

target output

𝑡𝜇 = 1

P data points

𝑡𝜇 = 0 car =no

Previous slide.

As we know from the previous lectures, we work in a supervised setting …
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review: Supervised learning 

input

car (yes)

Classifier

output

Techerteacher

𝒙𝜇

 𝑦𝜇 = 1𝑡𝜇 = 1target output classifier output

Previous slide.

… and use the target information to adjust the parameters of our classifier …
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review: Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output is correct

(for each input image,

even new ones)

Previous slide.

… which is a multi-layer neural network  in our case.
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𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

Review: Multilayer Perceptron

−1

−1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Previous slide.

The activity of output unit i for pattern number 𝜇 is denoted by  𝑦1
𝜇
. 
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Review: Example MNIST 

- images 28x28

- Labels:  0, …, 9

- 250 writers

- 60 000 images in training set

MNIST data samples

Picture: Goodfellow et al, 2016

Data base: 

http://yann.lecun.com/exdb/mnist/

Previous slide.

As we have seen last week, all data is noisy
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5 9

review: data base is noisy

- training data is always noisy

- the future data has different noise

- Classifier must extract the essence

 do not fit the noise!!

9 or 4?

9 or 4?

What might be a  

9 for reader A

Might be a

4 for reader B 

Previous slide.

Even the handwritten digits in the MNIST data base.
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Question for today

May we interpret 

the outputs 

our network as 

a probability?

input

output

4 9

Previous slide.

In this lecture,  we therefore reformulate the question of classification as follows:

Can we interpret an output activity  𝑦4
𝜇
= 0.8 as the probability of 80 percent that the 

pattern 𝜇 is a ‘4’?
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

Previous slide.

A central notion for a probabilistic interpretation is the concept of a  ‘generative model’.
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1. The statistical view

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

 𝑦1
𝜇  𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

car dog other
Idea:

interpret the output 

as the probability that

the novel input pattern  

should be classified

as class k

 𝑦𝑘
𝜇

𝒙𝝁

 𝑦𝑘
𝝁
= P(𝐶𝑘|𝒙𝝁)

 𝑦𝑘 = P(𝐶𝑘|𝒙 )

pattern from data base

arbitrary novel pattern

Previous slide.

The aim is to interpret the output of unit k

 𝑦𝑘 = P(𝐶𝑘|𝒙 )

as the probability that the novel input pattern 𝒙 belongs to class 𝐶𝑘

The notation is that of conditional probabilities

P(𝐶𝑘|𝒙 ) is the probability of class  𝐶𝑘 given 𝒙.
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1. The statistical view: single class

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

0

𝑝− = 1 −  𝑦1

+1 0

Take the output      and generate

predicted labels  𝑡1 probabilistically

 𝑦1

 generative model for class label

with   𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

predicted label

 𝑦1

Previous slide.

To enable such a probabilistic interpretation, we construct a generative model 

consisting of the neural network AND a probabilistic label generator.

The label generator outputs a 

1 with probability  𝑝+ =  𝑦1

And a

0 with probability  𝑝− = 1 −  𝑦1

Then we can ask whether the label generated by the model is the (on average) the 

correct one. To see this we return to the data base of supervised learning.
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

Previous slide.

To compare the label generated by the model with the one in the data base of 

supervised learning, we take a maximum likelihood approach.



07/03/2019

14

2. The likelihood of  a model (given data)

Overall aim:

What is the probability that my set of  P data points

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

could have been generated by my model?

Previous slide.

Specifically we ask:

What is the probability that all my data points (input patterns and labels) could have 

been generated by my model?
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2. The likelihood of a model 

Detour: 

forget about labeled data, and just think of input patterns

What is the probability that a set of  P data points

 𝒙𝑘 ; 1 ≤ k≤ 𝑃  ;

could have been generated by my model?

Previous slide.

Since it is a bit difficult to think about labels as a statistical process, let us consider first 

the classical problem of generating (unlabeled) data points.
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https://en.wikipedia.org/wiki/Gaussian_function#/media/

𝑝(𝑥) =
1

2𝜋𝜎
𝑒𝑥𝑝

−(𝑥−𝜇)2

2𝜎2
1

this depends on 2 parameters

𝑤1,𝑤2, = 𝜇, 𝜎

center width

2. Example: Gaussian distribution

𝑥

Previous slide.

Suppose that we know that the data comes from a Gaussian distribution. However, we 

do not know the mean (center) and the standard deviation (width) of the distribution.
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~𝑝(𝑥𝑘)

Probability that a random data generation process  draws 

one sample k with value  𝑥𝑘 is

2. Random Data Generation Process

𝑝(𝑥𝑘) =
1

2𝜋𝜎
exp

−(𝑥𝑘−𝜇)2

2𝜎2

Example: for the specific case of the Gaussian

𝑝(𝑥𝑘) 𝑝(𝑥)

What is the probability to generate P data points?

Previous slide.

In general, the distribution is not a Gaussian, but some function p(x).
We observe P data points and ask:

What is the probability that the specific set of  P data points COULD HAVE BEEN 

GENERATED by a random data generation process which draws data from p(x)?

The probability that you would draw a data point x in the range  

𝑥𝑘 + ∆𝑥
2

is

which is correct in the limit that ∆𝑥 → 0.

Therefore the probability is to draw the point 𝑥𝑘 is PROPORTIONAL to

The aim is now to generate not just a single one, but all P data points. 

𝑃 = 𝑝(𝑥𝑘)∆𝑥

~𝑝(𝑥𝑘)

𝑥𝑘 − ∆𝑥
2 < 𝑥𝑘 ≤
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Blackboard 1:

generate P data points

Your notes.
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2. Likelihood function (beyond Gaussian)

𝑝(𝒙𝑘)

Suppose the probability for generating a data point 𝒙𝑘 using

my model is proportional to

Suppose that data points are generated independently.

Then the likelihood that my actual data set 

could have been generated by my model is 

𝑿 =  𝒙𝑘; 1 ≤ k ≤ 𝑃  ;

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

Previous slide.

Under the assumption that data points are generated independently, the likelihood that 

total data set of P data points could have been generated by my model is

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)

Here I use the term likelihood in a broad sense defined as a quantity that is proportional 

to the probability. The narrow definition comes on the next slide.
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2. Maximum Likelihood   (beyond Gaussian)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

BUT this likelihood depends on the parameters of my model

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,

parameters

Choose the parameters such that the likelihood is maximal!

Previous slide.

The expression

as a function of the model parameters is called the likelihood function (in the narrow 

sense).

The aim is now to choose the parameters of the model such that the likelihood that the 

data COULD HAVE BEEN GENERATED by the model is maximal.

This optimization procedure is called the Maximum-Likelihood (ML) approach.

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,
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𝑝(𝑥𝑘) =
1

2𝜋𝜎
exp

−(𝑥𝑘−𝜇)2

2𝜎2
Likelihood of point 𝑥𝑘 is

2. Example: Gaussian distribution

x x xx xx x
𝑥

Which Gaussian is most 

consistent with the data?

[ ] green curve

[ ] blue curve

[ ] red curve

[ ] brown-orange curve

Previous slide.

For example, it is very unlikely that the data points (pink crosses) could have been 

generated by the blue distribution.
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2. Example: Gaussian 

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 =

The likelihood depends on the 2 parameters of my Gaussian

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 = 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝜇, 𝜎

Exercise 1 NOW!  (8 minutes): you have P data points

Calculate the optimal choice of parameter 𝜇:

To do so maximize 𝑝𝑚𝑜𝑑𝑒𝑙 𝑿 with respect to 𝜇

Your notes
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Blackboard 2:

Gaussian: best parameter choice for center

Your notes. 



07/03/2019

24

2. Maximum Likelihood   (general)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, = 

Choose the parameters such that the likelihood 

is maximal

𝑓 𝑦 = ln(𝑦)
Note:

Instead of maximizing

you can also maximize

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿|𝑝𝑎𝑟𝑎𝑚

ln(𝑝𝑚𝑜𝑑𝑒𝑙 𝑿|𝑝𝑎𝑟𝑎𝑚 )

𝑦1 < 𝑦2

Previous slide.

The idea is to use, amongst all the possible models, the model with the highest likelihood 

that it could have generated the actual observed data. The family of models is 

characterized by parameters.

In the case of the Gaussian, the parameters are the center and the width of the Gaussian.

In our case, the parameters will be the weight of the neural network.

Whatever you choose as  a family of models, you want to maximize the likelihood 

that the observed data could have been generated by your model. 

Because the logarithm is a monotone function, the parameter values you find by 

maximizing this likelihood are the same as the parameter values you would find if you 

maximize

𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛,

ln[𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, ]
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2. Maximum Likelihood   (general)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, = 

Choosing the parameters such that the likelihood 

is maximal is equivalent to maximizing the log-likelihood

“Maximize the likelihood that the given data 

could have been generated by your model”
(even though you know that the data points were generated 

by a process in the real world that might be very different)

𝐿𝐿 𝑤1,𝑤2, …𝑤𝑛, = ln 𝑝𝑚𝑜𝑑𝑒𝑙 =  𝑘 𝑙𝑛 𝑝(𝒙𝑘)

Previous slide.

Note that we make no claim that the data actually was generated by your model. The 

data may not be Gaussian, and you still try to fit it by a Gaussian.
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2. Maximum Likelihood   (general)

𝑝(𝒙1) 𝑝(𝒙2) 𝑝 𝒙3 …𝑝(𝒙𝑃)𝑝𝑚𝑜𝑑𝑒𝑙 𝑿| 𝑤1,𝑤2, …𝑤𝑛, = 

Choose the parameters such that the likelihood 

is maximal is equivalent to maximizing the log-likelihood

Note: some people (e.g.  David MacKay) use the term

‘likelihood’ ONLY IF we consider LL(w) as a function of

the parameters w. 

‘likelihood of the model parameters in view of the data’

𝐿𝐿 𝑤1,𝑤2, …𝑤𝑛, = ln 𝑝𝑚𝑜𝑑𝑒𝑙 =  𝑘 𝑙𝑛 𝑝(𝒙𝑘)

Previous slide.

The likelihood is a function of the model parameters. 

Finding the maximum of the likelihood gives you the best model parameters in the 

sense of ‘maximum likelihood’.

Note: The likelihood as a function of model parameters is not normalized to one and 

therefore you should not think of it as a probability or a probability density. 
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Application to artificial neural networks

Previous slide.

We now apply to concept of maximum likelihood to artificial neural networks
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3. The likelihood of data under a neural network model

Overall aim:

What is the likelihood that my set of  P data points

 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃  ;

could have been generated by my model?

Previous slide.

We now ask: what is the likelihood that the P pairs (input, target) that we have in the 

training base could have been generated by my neural network?
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𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

03. Maximum Likelihood  for neural networks

Blackboard 3:

Likelihood of P input-output pairs

Previous slide.

To analyze this we return to the generative model where the neural network output is 

interpreted as the probability to generate a label 1 or 0.
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Blackboard 3:

Likelihood of P input-output pairs

Your notes.
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𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

03. Maximum Likelihood  for neural networks

𝐸 𝑤 = −𝐿𝐿 = −ln 𝑝𝑚𝑜𝑑𝑒𝑙

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛  𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 −  𝑦

𝜇
)]

Minimize the negative log-likelihood

parameters= all weights, all layers

Previous slide.

The advantage of working with the negative log-likelihood, -LL, rather than the 

likelihood  itself, is that the resulting error function (loss function) is just a sum over all 

data points.

It is called the ‘cross-entropy’ error function because of its similarity with  quantities 

such as the entropy  of a binary distribution or the Kullback-Leibler divergence that 

frequently occur in information theory; see Section 5 below.

The arguments so far give us the following result:

If we want to interpret the output as a probability, the best parameters (in the 

sense of maximum likelihood) are those that minimizing the cross-entropy error 

function.

In other words: the quadratic error function is not the best one for classification tasks if 

we aim for a statistical interpretation. For a statistical interpretation, we need to use the 

cross-entropy error function.
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3. Cross-entropy error function  for neural networks

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛  𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 −  𝑦

𝜇
)]

Suppose we minimize the cross-entropy error function

Can we be sure that the output  𝑦
𝜇

will represent the probability?

Intuitive answer: No, because

A We will need enough data for training

(not just 10 data points for a complex task)

B We need a sufficiently flexible network 

(not a simple perceptron for XOR task)

Previous slide.

Now we ask the inverse question:

Let us start with the cross-entropy error function. If we have found the parameters that 

minimize the cross-entropy error function, does that guarantee that the output is the 

probability?

The answer has to be negative, because:

A if we do not have enough data points, the best error function cannot help us.

B if the network is just a simple perceptron, it is most likely not be flexible enough to 

solve the task at hand.

In the following, we will therefore assume that  

A we have always ‘enough data’ and B the network is ‘flexible enough’. 

The mathematical arguments on the blackboard should show HOW these assumptions 

are used to derive some strong conclusions.
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3. Output = probability ?

𝐸(𝑤) = − 𝜇[𝑡
𝜇
𝑙𝑛  𝑦

𝜇
+ (1 − 𝑡

𝜇
)ln(1 −  𝑦

𝜇
)]

Suppose we minimize the cross-entropy error function

Assume

A We have enough data for training

B We have a sufficiently flexible network 

Blackboard 4:

From Cross-entropy to output probabilities

Your notes. 
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Blackboard 4:

From Cross-entropy to output probabilities

Previous slide/Blackboard calculations.

The calculations with discrete bins ∆𝑥 show that the notions ‘enough examples’ and 

‘flexible enough’ are linked to each other: we need enough data samples in each bin to 

reliably estimate the fraction of positive examples in a bin; and the network must have 

enough flexibility to output for each bin a different value. 

In neural network applications we do not have discrete inputs, but the logic is the same: 

the flexibility of the network per unit distance (controlled by regularization) must match 

the number of data points per unit distance, and analogously in high dimensions.

Minimization of the crossentropy guarantees that the output is a probability only in the 

limit of an infinite number of data points in a network of arbitrary flexibility.
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QUIZ: Maximum likelihood solution means

[ ] find the unique set of parameters that generated the data

[ ] find the unique set of parameters that best explains the data

[ ] find the best set of parameters such that your model could

have generated the data 

Miminization of the  cross-entropy error function 

for single class output

[ ] is consistent with the idea that the output   𝑦1 of your network

can be interpreted as 

[ ] guarantees that the output   𝑦1 of your network

can be interpreted as 

 𝑦1 = P(𝐶1|𝒙)

 𝑦1 = P(𝐶1|𝒙)

[  ]

[x]

[x]

[x]

[ ]

Your notes.
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Application to artificial neural networks

4. Sigmoidal as a natural output function

Previous slide.

In this part we show that the sigmoidal function enables a nice probabilistic 

interpretation of the neuronal activities.
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4. Why sigmoidal output ? – single class

𝑎

1

0
𝑤𝑗,𝑘

(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

0

𝑝− = 1 −  𝑦1

Observations (single-class):

- Probability must be between 0 and 1

- Inutitively: smooth is better

 𝑦1

𝑔(𝑎)

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

Blackboard 5:

derive optimal sigmoidal

Previous slide.
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Blackboard 5:

derive optimal sigmoidal

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

0

Your notes. 
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4. Why sigmoidal output ? – single class

𝑎

1

0 𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

+1

𝑝+ =  𝑦1

0

 𝑦1

𝑔(𝑎)

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

 𝑦1 = 𝑔 𝑎 =
1

1 + 𝑒−𝑎

total input a into output neuron can

be interpreted as log-prob. ratio

Previous slide.

The total input (activation variable a) of the output neuron can be interpreted as the 

logarithm of the fraction p(x,C)/p(x,\C)

probability p(x,C)     that the input is x and belongs to the class 

ln ---------------------------------------------------------------------------------------------

probability p(x, \C) that the input is x and does not belong to the class

called the log-probability ratio. Here \C means: does NOT belong to class C.

People interpret the log-probabilities as a difference between

‘evidence in favor for assignment to class ’ 

‘evidence against assignment to class ’ .

Exercise this week: compare with  ln[p(C|x)/p(\C|x)]



07/03/2019

40

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:

for a= 3: g(3) =0.95

for a=-3: g(-3)=0.05

𝑔 𝑎 =
1

1 + 𝑒−𝑎

4. sigmoidal output = logistic function

Previous slide.

Above an activation value of a = 3 the probability to generate a 1 in the output is above 

95 percent. 

Thus the most likely output is ‘yes, this input belongs to the class’.

For an activity of zero, the probability is exactly 50 percent:

There is as much evidence for and against the assignment of this input to the class.
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Application to artificial neural networks

4. Sigmoidal as a natural output function

5. Multi-class problems

Previous slide.

So far we worked with probabilities for a single class C, such as ‘car’ versus ‘not car’, 

represented by a neural network with a SINGLE output.
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5. Multiple Classes

mutually exclusive classes

input

output
car dog

multiple attributes

input

output

teeth dog ears

Previous slide.

In the following we consider a network with multiple outputs. We need to distinguish 

between two different paradigms.

A (left): the outputs refer to  attributes. For example a dog picture  can show teeth, and 

ears, and the dog. Therefore several outputs can be active at the same time.

B (right): the outputs refer to mutually exclusive classes. For example, an image can be 

classified as either a car or a dog or a house, but not two at the same time. [This is an 

important assumption which implies that I we exclude the case that the image could 

show one car and two dogs.]
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5. Multiple Classes: Multiple attributes

Multiple attributes:

input

output

teeth dog ears

equivalent to several

single-class decisions

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

1 0

 𝑦1

1   0    1

Previous slide.

The case of multiple attributes can be treated as several single-class decisions that are 

taken in parallel. The image can contain ears or not ears; teeth or not teeth, … .  The 

fact that we see an ear does not exclude the fact that we see on the same image also 

some teeth.
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5. Multiple Classes: Mutuall exclusive classes

mutually exclusive classes

input

output
car dog

either car or dog:

only one can be true



outputs interact

Previous slide.

For mutually exclusive classes, the situation is different. We assume that the image 

contains one class at a time: either a car, or a dog, or a tree, or a house, but not several 

items at the same time. 

This implies that the outputs must interact. If one of the output shows ‘true’ the other 

must show ‘not true’.
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5. Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

 𝑦1

1

1-hot-coding: 

 𝑡𝑘
𝜇
=1→  𝑡𝑗

𝜇
=0 for j ≠k

Previous slide.

In the case of mutually exclusive classes, the database of supervised learning has 

labels that reflect ‘one-hot coding’: For each input 𝒙 exactly one of the target values is 1 

and all the others are zero.
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5. Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

 𝑦1

1-hot-coding: 

 𝑡𝑗
𝜇
=0 for j ≠k

1

Outputs are NOT independent:

 

𝑘=1

𝐾

𝑡𝑘
𝜇
= 1 exactly one output is 1

 𝑡𝑘
𝜇
=1→

 

𝑘=1

𝐾

 𝑦1
𝜇
= 1 Output probabilities sum to 1

Previous slide.

Similarly, an interpretation of the networks outputs as probabilities implies that the 

outputs of the network must sum to one.

 

𝑘=1

𝐾

 𝑦1
𝜇
= 1
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5. Why sigmoidal output ?

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

1 0

Observations (multiple-classes):

- Probabilities must sum to one!

𝑎

1

0

 𝑦1

𝑔(𝑎)

 𝑦3

1 0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

 𝑦1

1 0

Exercise this week! 

derive softmax as optimal multi-class output

Your notes.

In the exercises this week, you will show that the conditions that

(i) outputs are probabilities

(ii) probabilities add up to one,

imply the ‘softmax’ output function.
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5. Softmax output

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

𝑎

1

0

 𝑦1

𝑔(𝑎)

 𝑦𝑘 = P(𝐶𝑘|𝒙) = 𝑷(  𝑡𝑘 =1|𝒙)

 𝑦𝑘 = P(𝐶𝑘|𝒙) =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋 𝒆𝒙𝒑(𝑎𝑗)

0

 𝑦3

0

 𝑦1

1

Previous slide.

A generative probabilistic model for mutually exclusive classes (‘1-hot-coding’) implies a 

neural network where the output neurons interact in the form of a ‘softmax’ function.

Mathematically speaking: if we want to interpret the output of neuron k as

then the outputs should interact with each other so that the output of neuron k is 

The right-hand side is called the ‘softmax’ function

 𝑦𝑘 = P(𝐶𝑘|𝒙) = 𝑷(  𝑡𝑘 =1|𝒙)

 𝑦𝑘 =
𝒆𝒙𝒑(𝑎𝑘)

 𝒋𝒆𝒙𝒑(𝑎𝑗)
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5. Exclusive Multiple Classes

𝑤𝑗,𝑘
(1)

𝒙 ∈ 𝑅𝑁+1

 𝑦2

𝑥𝑗
(1)

0

 𝑦3

0

 𝑦1 = P(𝐶1|𝒙) = 𝑷(  𝑡1 =1|𝒙)

 𝑦1

Blackboard 6:

probility of target labels and likelihood function

1-hot-coding: 

 𝑡𝑗
𝜇
=0 for j ≠k

1

Outputs are NOT independent:

 

𝑘=1

𝐾

𝑡𝑘
𝜇
= 1 exactly one output is 1

 𝑡𝑘
𝜇
=1→

Previous slide.

For a single-class problem, we have seen that a maximum likelihood approach leads to 

a cross-entropy error function.

We repeat the derivation for the analogous situation of mutually exclusive classes.
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Blackboard 6:

Probability of target labels: mutually exclusive classes

Your notes.
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5. Cross entropy error  for neural networks: Multiclass

𝐸(𝑤) = −  

𝑘=1

𝐾

 

𝜇

[𝑡𝑘
𝜇
𝑙𝑛  𝑦𝑘

𝜇
]

Minimize* the cross-entropy

parameters= all weights, all layers

We have a total of K classes (mutually exclusive: either dog or car)

KL 𝑤 = −  𝑘=1
𝐾  𝜇[𝑡𝑘

𝜇
𝑙𝑛  𝑦𝑘

𝜇
] −  𝜇[𝑡𝑘

𝜇
𝑙𝑛 𝑡𝑘

𝜇
]}

Compare: KL divergence between outputs and targets

KL 𝑤 = 𝐸 𝑤 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

*Minimization under 

the constraint:

 𝑘=1
𝐾  𝑦𝑘

𝜇
= 1

Previous slide.

The cross-entropy error function for mutually exclusive classes is a generalization of the 

cross-entropy formula for a single class. To see this, assume that we have exactly two 

mutually exclusive classes: thus if the targets of the first output is 1 the target of the 

second output must be zero (and vice versa). This assumption leads back to the single-

class cross-entropy formula.

For the multi-class problem, the cross-entropy error function can be interpreted as the 

KL divergence between actual outputs and targets plus a constant.

For the position of the minimum of the error function the constant is irrelevant.

Since output probabilities sum to one, and since we want to interpret the outputs as 

probabilities, the minimization must be performed under the constraint

 𝑘=1
𝐾  𝑦𝑘

𝜇
= 1.

Working with the softmax function in the output guarantees that this constraint is always 

satisfied
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Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical Classification by Deep Networks

1. The statistical view: generative model

2. The likelihood of data under a model

3. Application to artificial neural networks

4. Multi-class problems

5. Sigmoidal as a natural output function

6. Rectified linear for hidden units

Previous slide.

So far we only focused on the function used in the output layer. The question arises 

whether there is also an ‘ideal’ function for the hidden neurons.
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𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

output layer

use sigmoidal unit (single-class)

or softmax (exclusive mutlit-class)

6. Modern Neural Networks

hidden layer

use rectified linear unit in N+1 dim.

f(x)=x for x>0

f(x)=0 for x<0 or x=0

Previous slide.

There are no rigorous theoretical arguments. In practice, modern artificial neural 

networks often use piecewise linear units.
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𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝑥1
(0)

𝑥2
(0)

1

1

-1
2 6

-2

1.5

𝑝 ≥ 0.95

𝑝 ≤ 0.05

0 ≤ 𝑝 ≤ 0.95

Preparation for Exercises: 

Link multilayer networks to probabilities

Previous slide.

In the exercises, we will use a piecewise linear functions for the hidden units, and a 

single sigmoidal output function.

The blue shading indicates that at least 95 percent of the examples that lie inside the 

rectangular area belong to the class (and at most 5 percent  in that area do not belong 

the class). 

Outside the dashed red polygone, at least 95 percent of the examples do not belong to 

the class (and less than 5 percent belong to the class).

In order to construct the solution, we exploit the fact that for the sigmoidal output, a 

probability of p=0.95 corresponds to an activation of a=+3.
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𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝑥1
(0)

𝑥2
(0)

1

1

-1
2

Preparation for Exercises: there are many solutions!!!!

Previous slide.

If we use step functions in the hidden layer,  we cannot model probabilities. However, it 

is easier to develop an intuition about how the solutions could look like.

The blue shading on the left-hand side indicates that all positive examples lie inside the 

rectangular area.
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QUIZ: Modern Neural Networks 

[ ]  piecewise linear units should be used in all layers 

[ ]  piecewise linear units should be used in the hidden layers

[ ]  softmax unit should be used for exclusive multi-class in

an output layer in problems with 1-hot coding

[ ] sigmoidal unit should be used for single-class problems

[ ] two-class problems (mutually exclusive) are the same as 

single-class problems

[ ] multiple-attribute-class problems are treated as 

multiple-single-class

[ ] In neural nets we can interpret the output as a probability,

[ ] if we are careful in the model design, we may interpret 

the output as a probability that the data belongs to the class

 𝑦1 = P(𝐶1|𝒙)

[  ]

[x]

[x]

[x]

[x]

[x]

[  ]

[x]

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 3

Statistical classification by deep networks

Objectives for today:

- The cross-entropy error is the optimal 

loss function for classification tasks

- The sigmoidal (softmax) is the optimal 

output unit for classification tasks

- Exclusive Multi-class problems use  ‘1-hot coding’ 

- Under certain conditions we may interpret the

output as a probability

- Piecewise linear units are preferable for 

hidden layers
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Reading for this lecture:

Bishop 2006, Ch. 4.2 and 4.3

Pattern recognition and Machine Learning

or

Bishop 1995, Ch. 6.7 – 6.9 

Neural networks for pattern recognition

or

Goodfellow et al.,2016 Ch. 5.5, 6.2, and 3.13 of

Deep Learning


