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Application Multiprocess Structuring

• One application = multiple processes

• Example: web server

• Goal: overlap computation with I/O



Application Multiprocess Structuring
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Multiprocess Web Server

Listener Worker

Worker

…

…

Worker



Interprocess Communication

• Always by value

• No addresses / pointers



Interprocess Communication

• Message passing

• Remote procedure call

– Client and server stubs



Week 4
Application Multithreading

and Synchronization (continued)

(slides Willy Zwaenepoel)

Pamela Delgado

March 13, 2019



Key Concepts

• Multithreading vs. multiprocessing

• Synchronization

• Pthreads examples



Two Processes
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Two Threads in a Process

stack

PC

registers

code

heap

stack

PC

registers

globals



In General

• Processes provide separation

– In particular, memory separation (no shared data)

– Suitable for coarse-grain interaction

• Threads do not

– In particular, share memory (shared data)

– Suitable for tighter integration



Most Important Difference

• Process crashes

– Other processes are not affected

• Thread crashes

– The entire process, including other threads, crashes



Concrete Example: Web Server

• Serving static content (files)

– Probably no bugs

– Can easily be done in a multithreaded process

• Serving dynamic (third-party) content

– No guarantees about bugs

– Keep in a different process



Shared Data

• Advantage: 

– Many threads can read/write it

• Disadvantage:

– Many threads can read/write it

– Can lead to data races



Data Race

• Unexpected/unwanted access to shared data

• Result of inter-leaving of thread executions

• Program must be correct for all inter-leavings



Basic Approach to Multithreading

• Divide “work” among multiple threads

• Which data is shared?

– Globals and heap

– Not locals

– Not read-only

• Where is shared data accessed?

• Put shared data access in critical section

– Only one process at a time can access it



Why this (mostly) works

• Trouble with multithreaded execution:

– Data races

– Data changed by another thread

• Critical section:

– No other thread can change data 

• So you are (mostly) ok



Pthreads: Thread Creation and Destruction

• Pthread_create( &threadid, threadcode, arg)

• Pthread_exit( status )

• Pthread_join( threadid, &status )



Pthreads: Thread Creation and Destruction

• Pthread_create( &threadid, threadcode, arg)

– Create thread

– Return threadid

– Run threadcode

– With argument arg

• Pthread_exit( status )

• Pthread_join( threadid, &status )



Pthreads: Thread Creation and Destruction

• Pthread_create( &threadid, threadcode, arg)

• Pthread_exit( status )

– Terminate thread

– Optionally return status

• Pthread_join( threadid, &status )



Pthreads: Thread Creation and Destruction

• Pthread_create( &threadid, threadcode, arg)

• Pthread_exit( status )

• Pthread_join( threadid, &status )

– Wait for thread threadid to exit

– Receive status, if any



Pthreads: Locks

• Pthread_mutex_lock( mutex )

• Pthread_mutex_unlock( mutex )



Pthreads: Locks

• Pthread_mutex_lock( mutex )

– If mutex is held, block

– If mutex is not held

• Acquire mutex

• Proceed

• Pthread_mutex_unlock( mutex )



Pthreads: Locks

• Pthread_mutex_lock( mutex )

• Pthread_mutex_unlock( mutex )

– Release mutex



Example: Single-Threaded Code

main() {
int i
int sum = 0, prod = 1
for( i=0; i<MAX; i++ ) {

c = a[i] * b[i]
sum += c
prod *= c

}
}



Basic Approach to Multithreading

• Divide “work” among multiple threads

• Which data is shared?

– Globals and heap

– Not locals

– Not read-only

• Where is shared data accessed?

• Define one mutex

• Put lock/unlock around each shared access



Example: Divide Work

• Give each thread equal number of iterations



Example: Divide Work
main() {

int i
int sum= 0, prod = 1

for( i=0; i<MAX_THREADS; i++ ) { Pthread_create(…) }
for( i=0; i<MAX_THREADS; i++ ) { Pthread_join(…) }
printf( sum )
printf( prod )

}

Threadcode() {
int i, c
for( i=my_min; i<my_max; i++ ) {

c = a[i] * b[i]
sum += c
prod *= c

}
}



Example: Shared Data

• Shared data

– sum

– prod

• Shared read-only data
• a[], b[] read only

• Local data

– i (loop index), c

• mutex on access to sum and prod



Example: Synchronization

Threadcode() {
int i
for( i=my_min; i<my_max; i++ ) {

c = a[i] * b[i]
Pthread_mutex_lock( biglock )
sum += c
prod *= c
Pthread_mutex_unlock( biglock )

}
}



A Common Mistake/Misunderstanding:
A Single Line of Code is not Atomic

• a = a + 1

• Is in reality

– Load a from memory into register

– Increment register

– Store register value in memory

• Instruction sequence may be interleaved

• Some machines have atomic increments



Back to Where We Were

Threadcode() {
int i
for( i=my_min; i<my_max; i++ ) {

c = a[i] * b[i]
Pthread_mutex_lock( biglock )
sum += c
prod *= c
Pthread_mutex_unlock( biglock )

}
}



Why it will not work very well

• Single lock inhibits parallelism

• Two approaches:

– Fine-grain locking:

• Multiple locks on individual pieces of shared data

– Privatization:

• Make shared data accesses into private data accesses 



Fine Grain Locking

• Define separate lock for sum and prod



Example: Finer-Grain Locking

Threadcode() {
int i, c
for( i=my_min; i<my_max; i++ ) {

c = a[i] * b[i]
Pthread_mutex_lock(sumlock)
sum += c
Pthread_mutex_unlock(sumlock)
Pthread_mutex_lock(prodlock)
prod *= c
Pthread_mutex_unlock(prodlock)

}
}



Example: Privatization

• Define for each thread

– A local variable representing its sum

– A local variable representing its product

• Use those for accesses in the loop

– Become local accesses

– No need for lock

• Only access shared data after the loop

– Use lock there



Example: Privatization
Threadcode() {

int i, c
local_sum = 0
local_prod = 1

for( i=my_min; i<my_max; i++ ) {
c = a[i] * b[i]
local_sum += c
local_prod *= c

}

Pthread_mutex_lock(sumlock)
sum += local_sum
Pthread_mutex_unlock(sumlock)
Pthread_mutex_lock(prodlock)
prod *= local_prod
Pthread_mutex_unlock(prodlock)

}



Example: Privatization

• Only one access to each lock per thread

• Compare to before mymax-mymin accesses



Another Example:
Multithreaded Web Server

ListenerThread {
forever {

Receive( request )
Pthread_create(…)

}
}

WorkerThread( request ) {
read file from disk
Send( response )
Pthread_exit()

}



Shared Data?

• There is none!

• Process creation serves as synchronization



Multithreaded Web Server with Thread Pool

ListenerThread {
for( i=0; i<MAX_THREADS; i++ ) { Pthread_create(…) }
forever {

Receive( request )
hand request to thread[?]

}
}

WorkerThread[?] {
forever {

wait for available request
read file from disk
Send( reply )

}
}



Shared Data?

• We need to create shared data

• Going to be some kind of a queue

• Put lock/unlock around it



Multithreaded Web Server with Thread Pool
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
Pthread_mutex_unlock( queuelock )

}
}

WorkerThread {
forever {

Pthread_mutex_lock( queuelock )
take request out of queue
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



It will not work

• Not fork-join parallelism

• You need to tell worker(s) there is something 
for them to do (i.e., in the queue)

• Sometimes called task parallelism



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

• Pthread_cond_signal( cond, mutex* )

• Pthread_cond_broadcast( cond, mutex )

* Not strictly correct, but easier to explain



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

• Pthread_cond_signal( cond, mutex )

• Pthread_cond_broadcast( cond, mutex )

• Must hold mutex when calling any of these!



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

– Wait for a signal on cond

– Release mutex

• Pthread_cond_signal( cond, mutex )

• Pthread_cond_broadcast( cond, mutex )

• Must hold mutex when calling any of these!



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

• Pthread_cond_signal( cond, mutex )

– Signal one thread waiting on cond

– Signaled thread re-acquires mutex

• At some later time, not necessarily immediately

– If no thread waiting, no-op

• Pthread_cond_broadcast( cond, mutex )



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

• Pthread_cond_signal( cond, mutex )

• Pthread_cond_broadcast( cond, mutex )

– Signal all threads waiting on cond

– If no thread waiting, no-op



Multithreaded Web Server with Thread Pool
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
Pthread_cond_signal( notempty, queuelock)
Pthread_mutex_unlock( queuelock )

}
}
WorkerThread {

forever {
Pthread_mutex_lock( queuelock )
Pthread_cond_wait( notempty, queuelock )
take request out of queue
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



Incorrect

• All worker threads busy (none waiting)

• Listener does a signal

• No thread waiting: signal is no-op

• Worker thread finishes what it was doing

– Will do a wait

– Although request is waiting in queue



In General

• Signals have no memory

• Forgotten if no thread waiting

• So need an extra variable to remember them



Multithreaded Web Server with Thread Pool
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
avail++
Pthread_cond_signal( notempty, queuelock)
Pthread_mutex_unlock( queuelock )

}
}
WorkerThread {

forever {
Pthread_mutex_lock( queuelock )
if( avail <= 0 ) Pthread_cond_wait( notempty, queuelock )
take request out of queue
avail--
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



Note

• Should now be clear why mutex must be held

• Avail is a shared data item

• Without mutex could have data race



Imagine Solution Without Locks
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
avail++
Pthread_cond_signal( notempty, queuelock)
Pthread_mutex_unlock( queuelock )

}
}
WorkerThread {

forever {
Pthread_mutex_lock( queuelock )
if( avail <= 0 ) Pthread_cond_wait( notempty, queuelock )
take request out of queue
avail--
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



Example: One Worker Thread

• Worker checks avail and finds it to be 0

• Worker interrupted and listener runs

• Listener sets avail to 1 and signals

• No thread is waiting, so signal is no-op

• Listener interrupted and worker runs

• Worker does a wait

• Incorrect: worker waits with request in queue



Back to Solution With Locks
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
avail++
Pthread_cond_signal( notempty, queuelock)
Pthread_mutex_unlock( queuelock )

}
}
WorkerThread {

forever {
Pthread_mutex_lock( queuelock )
if( avail <= 0 ) Pthread_cond_wait( notempty, queuelock )
take request out of queue
avail--
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



Still not quite correct

• Q is empty, thread W1 waits

• Thread L puts request in Q
– Sets avail to 1

– Signals

– W1 is unblocked

• Thread W2 runs and takes something out of Q
– Sets avail to 0

• Now W1 runs
– It must check the value of avail



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

– Wait for a signal on cond

– Release mutex

• Pthread_cond_signal( cond, mutex )

• Pthread_cond_broadcast( cond, mutex )

• Must hold mutex when calling any of these!



Pthreads: Condition Variables

• Pthread_cond_wait( cond, mutex )

• Pthread_cond_signal( cond, mutex )

– Signal one thread waiting on cond

– Signaled thread re-acquires mutex

• At some later time, not necessarily immediately

– If no thread waiting, no-op

• Pthread_cond_broadcast( cond, mutex )



Multithreaded Web Server with Thread Pool
ListenerThread {

for( i=0; i<MAX_THREADS; i++ ) thread[i] = Pthread_create(…)
forever {

Receive( request )
Pthread_mutex_lock( queuelock )
put request in queue
avail++
Pthread_cond_signal( notempty, queuelock)
Pthread_mutex_unlock( queuelock )

}
}
WorkerThread {

forever {
Pthread_mutex_lock( queuelock )
while( avail <= 0 ) Pthread_cond_wait( notempty, queuelock )
take request out of queue
avail--
Pthread_mutex_unlock( queuelock )
read file from disk
Send( reply )

}
}



Kernel Multithreading:
Kernel is a Server

• Requests from users 

– System calls

– Traps

• Requests from devices

– Interrupts



Kernel as a Server
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Kernel is Event-Driven Program

• Nothing to do

• Interrupt (from device)

• Trap (from process)

• System call (from process}

Do nothing

Start running



Kernel Code

InterruptVector[1] = address of interrupt 1 handler routine
InterruptVector[2] = address of interrupt 2 handler routine
…

TrapVector[1] = address of trap 1 handler routine
TrapVector[2] = address of trap 2 handler routine
…

SystemCallVector[1] = address of system call 1 handler routine
SystemCallVector[2] = address of system call 2 handler routine
….

forever {
wait for something to happen

}



Kernel as a Server
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For Simplicity

• One kernel thread for each user thread

• Called 1-to-1 mapping

• Is the case in Linux

• Not in other OSs



How does it work? User to Kernel

• User thread makes system call

• Switch to kernel mode

• PC = system call handler routine

• SP = kernel stack of kernel thread



How does it work? Kernel to User

• SP = stack of user thread

• PC = user thread PC (after system call)

• Return from kernel mode

• Run in user thread



Note: Separate Stack

• User thread and corresponding kernel thread 
have separate stacks

• Why? Because of security

– while one thread of a process in kernel 

– other thread could modify stack



Kernel Synchronization

• Different kernel threads access shared data

• Must be synchronized

• As in any multithreaded program

• Using a kernel synchronization library

– Not Pthreads (is a user-level library)



What Makes Kernel Different?

• In addition to kernel threads

• Also interrupts



How does it work?

• Device interrupt

• PC = interrupt handler

• SP = interrupt thread stack

• Run interrupt handler



Kernel Synchronization

• Different kernel threads access shared data

• Must be synchronized

• As in any multithreaded program

• But interrupts make things different



Interrupts

• Must be served quickly

• Interrupt handling must not block



Solution

• Add another set threads 
– Soft interrupt threads

• Interrupt 
– Does absolute minimum to service device

– Never blocks!

– Put request in queue for soft interrupt thread

– Get soft interrupt thread ready

• Soft interrupt thread
– Does bulk of work



Advantages

• Interrupts can be served quickly

• Narrow interface

– Interrupt and rest of the kernel

• Soft interrupt threads ~ other kernel threads 

– With some exceptions, not going into it here



Summary

• Why shared data and multithreading?
• Application multithreading

– Division of work
– Synchronization of shared data
– Fine-grain locking
– Privatization

• Kernel multithreading
– User threads vs. kernel threads
– Interrupts
– Soft interrupt threads


