Recap — Week 3

Pamela Delgado
March 6, 2019

(slides Willy Zwaenepoel)

Application Multiprocess Structuring

* One application = multiple processes
 Example: web server
* Goal: overlap computation with |/O

Application Multiprocess Structuring

=

code

globals

heap

stack

registers

PC

Multiprocess Web Server

Interprocess Communication

* Always by value
* No addresses / pointers

Interprocess Communication

* Message passing
 Remote procedure call

— Client and server stubs

Week 4
Application Multithreading
and Synchronization (continued)

Pamela Delgado
March 13, 2019

(slides Willy Zwaenepoel)

Key Concepts

* Multithreading vs. multiprocessing
* Synchronization
* Pthreads examples

Two Processes

code

globals

heap

stack

e
gkl
 bew
—_—

code

globals
heap

stack

llll\
4

registers

PC

registers

PC

Two Threads in a Process

~

registers

PC

code

globals
heap

o

registers

PC

In General

* Processes provide separation
— In particular, memory separation (no shared data)
— Suitable for coarse-grain interaction

* Threads do not

— In particular, share memory (shared data)
— Suitable for tighter integration

Most Important Difference

* Process crashes

— Other processes are not affected

* Thread crashes

— The entire process, including other threads, crashes

Concrete Example: Web Server

e Serving static content (files)

— Probably no bugs

— Can easily be done in a multithreaded process
e Serving dynamic (third-party) content

— No guarantees about bugs
— Keep in a different process

Shared Data

* Advantage:

— Many threads can read/write it

* Disadvantage:

— Many threads can read/write it
— Can lead to data races

Data Race

Unexpected/unwanted access to shared data
Result of inter-leaving of thread executions

Program must be correct for all inter-leavings

Basic Approach to Multithreading

Divide “work” among multiple threads

Which data is shared?

— Globals and heap
— Not locals
— Not read-only

Where is shared data accessed?

Put shared data access in critical section
— Only one process at a time can access it

Why this (mostly) works

* Trouble with multithreaded execution:
— Data races
— Data changed by another thread

e Critical section:

— No other thread can change data

e So you are (mostly) ok

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)

— Create th read I_Jrim_:lude <pCLhread.h>

int
pthread create(pLhread € = Lhread,
_ Return th readid const [}L.t.]r_'e;.lt.‘l attr t = attr, . .
volid = (+sCart_routine) (volids),
vold + areg) ;

— Run threadcode
— With argument arg

* Pthread exit(status)
* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

— Terminate thread
— Optionally return status

* Pthread join(threadid, &status)

Pthreads: Thread Creation and Destruction

* Pthread create(&threadid, threadcode, arg)
* Pthread exit(status)

* Pthread join(threadid, &status)
— Wait for thread threadid to exit
— Receive status, if any

int pthread join(pthread_ t thread, wvoid *+value_plLr);

Pthreads: Locks

 Pthread mutex_lock(mutex)
 Pthread mutex_unlock(mutex)

Pthreads: Locks

 Pthread mutex_lock(mutex)
— If mutex is held, block
— If mutex is not held

* Acquire mutex
* Proceed

* Pthread _mutex_unlock(mutex)

Pthreads: Locks

 Pthread mutex_lock(mutex)
 Pthread mutex_unlock(mutex)

— Release mutex

Example: Single-Threaded Code

main() {
int 1
int sum = @, prod =1
for(i=0; i<MAX; i++) {
c = a[i] * b[i]
sum += C
prod *= ¢
}
}

Basic Approach to Multithreading

Divide “work” among multiple threads

Which data is shared?

— Globals and heap
— Not locals
— Not read-only

Where is shared data accessed?
Define one mutex
Put lock/unlock around each shared access

Example: Divide Work

* Give each thread equal number of iterations

Example: Divide Work

main()
int 1
int sum= @, prod =1
for(i=0; i<MAX_THREADS; i++) { Pthread create(..) }
for(i=0; i<MAX_THREADS; i++) { Pthread _join(..) }
printf(sum)
printf(prod)
}

Threadcode() {
int 1, c
for(i=my min; i<my max; i++) {
c = a[i] * b[i]
sum += C
prod *= ¢

Example: Shared Data

Shared data
— Sum

— prod

Shared read-only data
* al], b[] read only

Local data
— i (loop index), c

mutex on access to sum and prod

Example: Synchronization

Threadcode() {

int 1

for(i=my _min; i<my max; i++) {
c = a[i] * b[i]
Pthread mutex_ lock(biglock)
sum += C
prod *= ¢
Pthread mutex unlock(biglock)

A Common Mistake/Misunderstanding:
A Single Line of Code is not Atomic

*a=a+l
* |sin reality

— Load a from memory into register
— Increment register

— Store register value in memory
* |nstruction sequence may be interleaved
e Some machines have atomic increments

Back to Where We Were

Threadcode() {

int i

for(i=my _min; i<my max; i++) {
c = a[i] * b[1i]
Pthread mutex_ lock(biglock)
sum += C
prod *= c
Pthread mutex _unlock(biglock)

Why it will not work very well

* Single lock inhibits parallelism

* Two approaches:
— Fine-grain locking:
e Multiple locks on individual pieces of shared data

— Privatization:
* Make shared data accesses into private data accesses

Fine Grain Locking

* Define separate lock for sum and prod

Example: Finer-Grain Locking

Threadcode() {

int i, c

for(i=my _min; i<my max; i++) {
c = a[i] * b[i]
Pthread mutex_lock(sumlock)
sum += C
Pthread _mutex_unlock(sumlock)
Pthread mutex_lock(prodlock)
prod *= ¢
Pthread mutex_unlock(prodlock)

Example: Privatization

e Define for each thread

— A local variable representing its sum

— A local variable representing its product

* Use those for accesses in the loop
— Become local accesses
— No need for lock

* Only access shared data after the loop
— Use lock there

Example: Privatization

Threadcode() {
int i, c
local sum = ©
local prod =1

for(i=my min; i<my max; i++) {
c = a[i] * b[1i]
local sum += ¢
local prod *= ¢

}

Pthread mutex_ lock(sumlock)
sum += local sum

Pthread _mutex_unlock(sumlock)
Pthread mutex_ lock(prodlock)
prod *= local prod

Pthread mutex_unlock(prodlock)

Example: Privatization

* Only one access to each lock per thread
 Compare to before mymax-mymin accesses

Another Example:
Multithreaded Web Server

ListenerThread {
forever {
Receive(request)
Pthread create(..)

}
}

WorkerThread(request) {
read file from disk
Send(response)
Pthread exit()

}

Shared Data?

* Thereis none!
* Process creation serves as synchronization

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) { Pthread_create(..) }
forever {
Receive(request)
hand request to thread[?]

}
}
WorkerThread[?] {
forever {
wait for available request
read file from disk
Send(reply)
}

}

Shared Data?

 \We need to create shared data
* Going to be some kind of a queue
* Put lock/unlock around it

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
Pthread mutex unlock(queuelock)

}

WorkerThread {
forever {
Pthread mutex lock(queuelock)
take request out of queue
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)

It will not work

* Not fork-join parallelism

* You need to tell worker(s) there is something
for them to do (i.e., in the queue)

* Sometimes called task parallelism

Pthreads: Condition Variables

Pthread cond_wait(cond, mutex)
Pthread cond_signal(cond, mutex™)

Pthread cond_broadcast(cond, mutex)

int pthread cond_wait (pthread cond_t =+cond, pthread_mutex_t smutex);
int pthread cond_signal (pthread_cond t =+cond);

" Not strictly correct, but easier to explain

Pt
Pt
Pt

Pthreads: Condition Variables

Nreac
Nreac

Nreac

_conc

_conc

_conc

_wait(cond, mutex)
_signal(cond, mutex)
_broadcast(cond, mutex)

Must hold mutex when calling any of these!

Pthreads: Condition Variables

Pthread cond wait(cond, mutex)
— Wait for a signal on cond
— Release mutex

Pthread cond_signal(cond, mutex)
Pthread cond broadcast(cond, mutex)

Must hold mutex when calling any of these!

Pthreads: Condition Variables

 Pthread _cond_ wait(cond, mutex)
* Pthread cond signal(cond, mutex)

— Signal one thread waiting on cond

— Signaled thread re-acquires mutex
* At some later time, not necessarily immediately

— If no thread waiting, no-op

 Pthread cond broadcast(cond, mutex)

Pt
Pt
Pt

Pthreads: Condition Variables

Nreac
Nreac

Nreac

_conc

_conc

_conc

_wait(cond, mutex)
_signal(cond, mutex)
_broadcast(cond, mutex)

— Signal all threads waiting on cond

— If no thread waiting, no-op

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
Pthread cond signal(notempty, queuelock)
Pthread mutex _unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
Pthread cond wait(notempty, queuelock)
take request out of queue
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)
}

Incorrect

All worker threads busy (none waiting)
Listener does a signal

No thread waiting: signal is no-op
Worker thread finishes what it was doing
— Will do a wait

— Although request is waiting in queue

In General

* Signals have no memory
* Forgotten if no thread waiting
* So need an extra variable to remember them

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
if(avail <= ©) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)
}

Note

e Should now be clear why mutex must be held
e Avail is a shared data item
e Without mutex could have data race

Imagine Solution Without Locks

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex _unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex_lock(queuelock)
if(avail <= @) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread _mutex_unlock(queuelock)
read file from disk
Send(reply)
}

Example: One Worker Thread

Worker checks avail and finds it to be 0
Worker interrupted and listener runs

Listener sets avail to 1 and signals

No thread is waiting, so signal is no-op
Listener interrupted and worker runs

Worker does a wait

Incorrect: worker waits with request in queue

Back to Solution With Locks

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
if(avail <= ©) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread mutex unlock(queuelock)
read file from disk
Send(reply)
}

Still not quite correct

Q is empty, thread W1 waits

Thread L puts request in Q

— Sets availto 1

— Signals

— W1 is unblocked

Thread W2 runs and takes something out of Q
— Sets availto O

Now W1 runs
— It must check the value of avail

Pthreads: Condition Variables

Pthread cond wait(cond, mutex)
— Wait for a signal on cond
— Release mutex

Pthread cond_signal(cond, mutex)
Pthread cond broadcast(cond, mutex)

Must hold mutex when calling any of these!

Pthreads: Condition Variables

 Pthread _cond_ wait(cond, mutex)
* Pthread cond signal(cond, mutex)

— Signal one thread waiting on cond
— Signaled thread re-acquires mutex

* At some later time, not necessarily immediately

— If no thread waiting, no-op

 Pthread cond broadcast(cond, mutex)

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread create(..)
forever {
Receive(request)
Pthread mutex lock(queuelock)
put request in queue
avail++
Pthread cond signal(notempty, queuelock)
Pthread mutex unlock(queuelock)

}
}
WorkerThread {
forever {
Pthread mutex lock(queuelock)
while(avail <= ©) Pthread cond wait(notempty, queuelock)
take request out of queue
avail--
Pthread mutex _unlock(queuelock)
read file from disk
Send(reply)
}

Kernel Multithreading:
Kernel is a Server

* Requests from users
— System calls
— Traps
* Requests from devices

— Interrupts

Kernel as a Server

user

kernel l

software
hardware l I

Kernel is Event-Driven Program

Nothing to do

Interrupt (from device)
Trap (from process)
System call (from process}

} Do nothing

—

—

—

Start running

Kernel Code

InterruptVector[1]
InterruptVector[2]

address of interrupt 1 handler routine
address of interrupt 2 handler routine

TrapVector[1l] = address of trap 1 handler routine
TrapVector[2] = address of trap 2 handler routine

SystemCallVector[1l] = address of system call 1 handler routine
SystemCallVector[2] = address of system call 2 handler routine
forever {

wait for something to happen

}

Kernel as a Server

user
kernel
multithreaded kernel
private stack, registers, PC
shared data
software

hardware

devicel device?2

For Simplicity

One kernel thread for each user thread
Called 1-to-1 mapping

Is the case in Linux

Not in other OSs

How does it work? User to Kernel

User thread makes system call
Switch to kernel mode

PC = system call handler routine
SP = kernel stack of kernel thread

How does it work? Kernel to User

SP = stack of user thread
PC = user thread PC (after system call)
Return from kernel mode

Run in user thread

Note: Separate Stack

e User thread and corresponding kernel thread
have separate stacks
 Why? Because of security

— while one thread of a process in kernel
— other thread could modify stack

Kernel Synchronization

Different kernel threads access shared data
Must be synchronized

As in any multithreaded program

Using a kernel synchronization library

— Not Pthreads (is a user-level library)

What Makes Kernel Different?

* |n addition to kernel threads
e Also interrupts

How does it work?

Device interrupt

PC = interrupt handler

SP = interrupt thread stack
Run interrupt handler

Kernel Synchronization

Different kernel threads access shared data
Must be synchronized

As in any multithreaded program

But interrupts make things different

Interrupts

* Must be served quickly
* Interrupt handling must not block

Solution

* Add another set threads
— Soft interrupt threads
* |Interrupt
— Does absolute minimum to service device
— Never blocks!
— Put request in queue for soft interrupt thread
— Get soft interrupt thread ready
e Soft interrupt thread
— Does bulk of work

Advantages

* Interrupts can be served quickly
* Narrow interface

— Interrupt and rest of the kernel

e Soft interrupt threads ~ other kernel threads

— With some exceptions, not going into it here

Summary

 Why shared data and multithreading?

* Application multithreading
— Division of work
— Synchronization of shared data
— Fine-grain locking
— Privatization
* Kernel multithreading
— User threads vs. kernel threads
— Interrupts
— Soft interrupt threads

