
Recap – Week 3

(slides Willy Zwaenepoel)

Pamela Delgado

March 6, 2019

Application Multiprocess Structuring

• One application = multiple processes

• Example: web server

• Goal: overlap computation with I/O

Application Multiprocess Structuring

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

Multiprocess Web Server

Listener Worker

Worker

…

…

Worker

Interprocess Communication

• Always by value

• No addresses / pointers

Interprocess Communication

• Message passing

• Remote procedure call

– Client and server stubs

Week 4
Application Multithreading

and Synchronization (continued)

(slides Willy Zwaenepoel)

Pamela Delgado

March 13, 2019

Key Concepts

• Multithreading vs. multiprocessing

• Synchronization

• Pthreads examples

Two Processes

code

heap

stack

PC

registers

globals

code

heap

stack

PC

registers

globals

Two Threads in a Process

stack

PC

registers

code

heap

stack

PC

registers

globals

In General

• Processes provide separation

– In particular, memory separation (no shared data)

– Suitable for coarse-grain interaction

• Threads do not

– In particular, share memory (shared data)

– Suitable for tighter integration

Most Important Difference

• Process crashes

– Other processes are not affected

• Thread crashes

– The entire process, including other threads, crashes

Concrete Example: Web Server

• Serving static content (files)

– Probably no bugs

– Can easily be done in a multithreaded process

• Serving dynamic (third-party) content

– No guarantees about bugs

– Keep in a different process

Shared Data

• Advantage:

– Many threads can read/write it

• Disadvantage:

– Many threads can read/write it

– Can lead to data races

Data Race

• Unexpected/unwanted access to shared data

• Result of inter-leaving of thread executions

• Program must be correct for all inter-leavings

Basic Approach to Multithreading

• Divide “work” among multiple threads

• Which data is shared?

– Globals and heap

– Not locals

– Not read-only

• Where is shared data accessed?

• Put shared data access in critical section

– Only one process at a time can access it

Why this (mostly) works

• Trouble with multithreaded execution:

– Data races

– Data changed by another thread

• Critical section:

– No other thread can change data

• So you are (mostly) ok

Pthreads: Thread Creation and Destruction

• Pthread_create(&threadid, threadcode, arg)

• Pthread_exit(status)

• Pthread_join(threadid, &status)

Pthreads: Thread Creation and Destruction

• Pthread_create(&threadid, threadcode, arg)

– Create thread

– Return threadid

– Run threadcode

– With argument arg

• Pthread_exit(status)

• Pthread_join(threadid, &status)

Pthreads: Thread Creation and Destruction

• Pthread_create(&threadid, threadcode, arg)

• Pthread_exit(status)

– Terminate thread

– Optionally return status

• Pthread_join(threadid, &status)

Pthreads: Thread Creation and Destruction

• Pthread_create(&threadid, threadcode, arg)

• Pthread_exit(status)

• Pthread_join(threadid, &status)

– Wait for thread threadid to exit

– Receive status, if any

Pthreads: Locks

• Pthread_mutex_lock(mutex)

• Pthread_mutex_unlock(mutex)

Pthreads: Locks

• Pthread_mutex_lock(mutex)

– If mutex is held, block

– If mutex is not held

• Acquire mutex

• Proceed

• Pthread_mutex_unlock(mutex)

Pthreads: Locks

• Pthread_mutex_lock(mutex)

• Pthread_mutex_unlock(mutex)

– Release mutex

Example: Single-Threaded Code

main() {
int i
int sum = 0, prod = 1
for(i=0; i<MAX; i++) {

c = a[i] * b[i]
sum += c
prod *= c

}
}

Basic Approach to Multithreading

• Divide “work” among multiple threads

• Which data is shared?

– Globals and heap

– Not locals

– Not read-only

• Where is shared data accessed?

• Define one mutex

• Put lock/unlock around each shared access

Example: Divide Work

• Give each thread equal number of iterations

Example: Divide Work
main() {

int i
int sum= 0, prod = 1

for(i=0; i<MAX_THREADS; i++) { Pthread_create(…) }
for(i=0; i<MAX_THREADS; i++) { Pthread_join(…) }
printf(sum)
printf(prod)

}

Threadcode() {
int i, c
for(i=my_min; i<my_max; i++) {

c = a[i] * b[i]
sum += c
prod *= c

}
}

Example: Shared Data

• Shared data

– sum

– prod

• Shared read-only data
• a[], b[] read only

• Local data

– i (loop index), c

• mutex on access to sum and prod

Example: Synchronization

Threadcode() {
int i
for(i=my_min; i<my_max; i++) {

c = a[i] * b[i]
Pthread_mutex_lock(biglock)
sum += c
prod *= c
Pthread_mutex_unlock(biglock)

}
}

A Common Mistake/Misunderstanding:
A Single Line of Code is not Atomic

• a = a + 1

• Is in reality

– Load a from memory into register

– Increment register

– Store register value in memory

• Instruction sequence may be interleaved

• Some machines have atomic increments

Back to Where We Were

Threadcode() {
int i
for(i=my_min; i<my_max; i++) {

c = a[i] * b[i]
Pthread_mutex_lock(biglock)
sum += c
prod *= c
Pthread_mutex_unlock(biglock)

}
}

Why it will not work very well

• Single lock inhibits parallelism

• Two approaches:

– Fine-grain locking:

• Multiple locks on individual pieces of shared data

– Privatization:

• Make shared data accesses into private data accesses

Fine Grain Locking

• Define separate lock for sum and prod

Example: Finer-Grain Locking

Threadcode() {
int i, c
for(i=my_min; i<my_max; i++) {

c = a[i] * b[i]
Pthread_mutex_lock(sumlock)
sum += c
Pthread_mutex_unlock(sumlock)
Pthread_mutex_lock(prodlock)
prod *= c
Pthread_mutex_unlock(prodlock)

}
}

Example: Privatization

• Define for each thread

– A local variable representing its sum

– A local variable representing its product

• Use those for accesses in the loop

– Become local accesses

– No need for lock

• Only access shared data after the loop

– Use lock there

Example: Privatization
Threadcode() {

int i, c
local_sum = 0
local_prod = 1

for(i=my_min; i<my_max; i++) {
c = a[i] * b[i]
local_sum += c
local_prod *= c

}

Pthread_mutex_lock(sumlock)
sum += local_sum
Pthread_mutex_unlock(sumlock)
Pthread_mutex_lock(prodlock)
prod *= local_prod
Pthread_mutex_unlock(prodlock)

}

Example: Privatization

• Only one access to each lock per thread

• Compare to before mymax-mymin accesses

Another Example:
Multithreaded Web Server

ListenerThread {
forever {

Receive(request)
Pthread_create(…)

}
}

WorkerThread(request) {
read file from disk
Send(response)
Pthread_exit()

}

Shared Data?

• There is none!

• Process creation serves as synchronization

Multithreaded Web Server with Thread Pool

ListenerThread {
for(i=0; i<MAX_THREADS; i++) { Pthread_create(…) }
forever {

Receive(request)
hand request to thread[?]

}
}

WorkerThread[?] {
forever {

wait for available request
read file from disk
Send(reply)

}
}

Shared Data?

• We need to create shared data

• Going to be some kind of a queue

• Put lock/unlock around it

Multithreaded Web Server with Thread Pool
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
Pthread_mutex_unlock(queuelock)

}
}

WorkerThread {
forever {

Pthread_mutex_lock(queuelock)
take request out of queue
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

It will not work

• Not fork-join parallelism

• You need to tell worker(s) there is something
for them to do (i.e., in the queue)

• Sometimes called task parallelism

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex*)

• Pthread_cond_broadcast(cond, mutex)

* Not strictly correct, but easier to explain

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex)

• Pthread_cond_broadcast(cond, mutex)

• Must hold mutex when calling any of these!

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

– Wait for a signal on cond

– Release mutex

• Pthread_cond_signal(cond, mutex)

• Pthread_cond_broadcast(cond, mutex)

• Must hold mutex when calling any of these!

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex)

– Signal one thread waiting on cond

– Signaled thread re-acquires mutex

• At some later time, not necessarily immediately

– If no thread waiting, no-op

• Pthread_cond_broadcast(cond, mutex)

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex)

• Pthread_cond_broadcast(cond, mutex)

– Signal all threads waiting on cond

– If no thread waiting, no-op

Multithreaded Web Server with Thread Pool
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
Pthread_cond_wait(notempty, queuelock)
take request out of queue
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Incorrect

• All worker threads busy (none waiting)

• Listener does a signal

• No thread waiting: signal is no-op

• Worker thread finishes what it was doing

– Will do a wait

– Although request is waiting in queue

In General

• Signals have no memory

• Forgotten if no thread waiting

• So need an extra variable to remember them

Multithreaded Web Server with Thread Pool
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Note

• Should now be clear why mutex must be held

• Avail is a shared data item

• Without mutex could have data race

Imagine Solution Without Locks
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Example: One Worker Thread

• Worker checks avail and finds it to be 0

• Worker interrupted and listener runs

• Listener sets avail to 1 and signals

• No thread is waiting, so signal is no-op

• Listener interrupted and worker runs

• Worker does a wait

• Incorrect: worker waits with request in queue

Back to Solution With Locks
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
if(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Still not quite correct

• Q is empty, thread W1 waits

• Thread L puts request in Q
– Sets avail to 1

– Signals

– W1 is unblocked

• Thread W2 runs and takes something out of Q
– Sets avail to 0

• Now W1 runs
– It must check the value of avail

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

– Wait for a signal on cond

– Release mutex

• Pthread_cond_signal(cond, mutex)

• Pthread_cond_broadcast(cond, mutex)

• Must hold mutex when calling any of these!

Pthreads: Condition Variables

• Pthread_cond_wait(cond, mutex)

• Pthread_cond_signal(cond, mutex)

– Signal one thread waiting on cond

– Signaled thread re-acquires mutex

• At some later time, not necessarily immediately

– If no thread waiting, no-op

• Pthread_cond_broadcast(cond, mutex)

Multithreaded Web Server with Thread Pool
ListenerThread {

for(i=0; i<MAX_THREADS; i++) thread[i] = Pthread_create(…)
forever {

Receive(request)
Pthread_mutex_lock(queuelock)
put request in queue
avail++
Pthread_cond_signal(notempty, queuelock)
Pthread_mutex_unlock(queuelock)

}
}
WorkerThread {

forever {
Pthread_mutex_lock(queuelock)
while(avail <= 0) Pthread_cond_wait(notempty, queuelock)
take request out of queue
avail--
Pthread_mutex_unlock(queuelock)
read file from disk
Send(reply)

}
}

Kernel Multithreading:
Kernel is a Server

• Requests from users

– System calls

– Traps

• Requests from devices

– Interrupts

Kernel as a Server

user

kernel

user1 user2 user3

kernel

software

hardware

device1 device2

Kernel is Event-Driven Program

• Nothing to do

• Interrupt (from device)

• Trap (from process)

• System call (from process}

Do nothing

Start running

Kernel Code

InterruptVector[1] = address of interrupt 1 handler routine
InterruptVector[2] = address of interrupt 2 handler routine
…

TrapVector[1] = address of trap 1 handler routine
TrapVector[2] = address of trap 2 handler routine
…

SystemCallVector[1] = address of system call 1 handler routine
SystemCallVector[2] = address of system call 2 handler routine
….

forever {
wait for something to happen

}

Kernel as a Server

user

kernel

user1 user2 user3

multithreaded kernel
private stack, registers, PC

shared data

software

hardware

device1 device2

For Simplicity

• One kernel thread for each user thread

• Called 1-to-1 mapping

• Is the case in Linux

• Not in other OSs

How does it work? User to Kernel

• User thread makes system call

• Switch to kernel mode

• PC = system call handler routine

• SP = kernel stack of kernel thread

How does it work? Kernel to User

• SP = stack of user thread

• PC = user thread PC (after system call)

• Return from kernel mode

• Run in user thread

Note: Separate Stack

• User thread and corresponding kernel thread
have separate stacks

• Why? Because of security

– while one thread of a process in kernel

– other thread could modify stack

Kernel Synchronization

• Different kernel threads access shared data

• Must be synchronized

• As in any multithreaded program

• Using a kernel synchronization library

– Not Pthreads (is a user-level library)

What Makes Kernel Different?

• In addition to kernel threads

• Also interrupts

How does it work?

• Device interrupt

• PC = interrupt handler

• SP = interrupt thread stack

• Run interrupt handler

Kernel Synchronization

• Different kernel threads access shared data

• Must be synchronized

• As in any multithreaded program

• But interrupts make things different

Interrupts

• Must be served quickly

• Interrupt handling must not block

Solution

• Add another set threads
– Soft interrupt threads

• Interrupt
– Does absolute minimum to service device

– Never blocks!

– Put request in queue for soft interrupt thread

– Get soft interrupt thread ready

• Soft interrupt thread
– Does bulk of work

Advantages

• Interrupts can be served quickly

• Narrow interface

– Interrupt and rest of the kernel

• Soft interrupt threads ~ other kernel threads

– With some exceptions, not going into it here

Summary

• Why shared data and multithreading?
• Application multithreading

– Division of work
– Synchronization of shared data
– Fine-grain locking
– Privatization

• Kernel multithreading
– User threads vs. kernel threads
– Interrupts
– Soft interrupt threads

