Exercise Three

The following definitions were discussed in Buro's lecture last week.
Let $\omega_{1}=\sum_{I} \alpha_{I} d \omega^{I}$ be a differential k-form on \mathbb{R}^{n} and $\omega_{2}=\sum_{J} \beta_{J} d x^{J}$ a differential s-form on \mathbb{R}^{n}, where $I \in \mathcal{I}_{k}, J \in \mathcal{I}_{s}$ are ordered k-tuple and ordered s-tuple. Then the wedge product of ω_{1} and ω_{2} is defined to be a differential $(k+s)$-form by

$$
\omega_{1} \wedge \omega_{2}=\sum_{I, J} \alpha_{I} \beta_{J} d x^{I} \wedge d x^{J}
$$

Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map. Let ω be a differential k-form in \mathbb{R}^{m}. Then f induces a differential k-form $f^{*} \omega$ in \mathbb{R}^{n}, called the pull back of ω under f, as follows

$$
f^{*} \omega(p)\left(v_{1}, \cdots, v_{k}\right)=\omega(f(p))\left(d f_{p}\left(v_{1}\right), \cdots, d f_{p}\left(v_{k}\right)\right) \quad \text { if } k \geq 1
$$

and

$$
f^{*}(\omega)=\omega \circ f \quad \text { if } k=0 .
$$

Above, $d f_{p}: T_{p} \mathbb{R}^{n} \rightarrow T_{f(p)} \mathbb{R}^{m}$ is the differential of f at $p \in \mathbb{R}^{n}$.

1. Show that the definition of wedge product as above implies that if $\varphi_{1}, \cdots, \varphi_{k}$ are 1-forms on \mathbb{R}^{n}, then the wedge product of $\varphi_{1} \wedge \cdots \varphi_{k}$ defines a differential k-form on \mathbb{R}^{n} satisfying

$$
\varphi_{1} \wedge \cdots \wedge \varphi_{k}\left(v_{1}, \cdots, v_{k}\right)=\operatorname{det}\left(\varphi_{i}\left(v_{j}\right)\right) \quad i, j=1, \cdots, k .
$$

2. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map. Let ω_{1} and ω_{2} be differential k-forms in \mathbb{R}^{m} and $g: \mathbb{R}^{m} \rightarrow \mathbb{R}$ a 0 -form. Show that

- $f^{*}\left(\omega_{1}+\omega_{2}\right)=f^{*} \omega_{1}+f^{*} \omega_{2}$
- $f^{*}\left(g \omega_{1}\right)=f^{*}(g) f^{*}\left(\omega_{1}\right)$
- If $\theta_{1}, \cdots, \theta_{k}$ are 1 -forms on \mathbb{R}^{m}, then $f^{*}\left(\theta_{1} \wedge \cdots \wedge \theta_{k}\right)=f^{*} \theta_{1} \wedge$ $\cdots \wedge f^{*} \theta_{k}$.

3. Let $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ be a smooth map and $g: \mathbb{R}^{l} \rightarrow \mathbb{R}^{n}$ a smooth map. Show that

- $f^{*}(\omega \wedge \theta)=f^{*} \omega \wedge f^{*} \theta$
- $(f \circ g)^{*} \omega=g^{*}\left(f^{*}(\omega)\right)$.

4. Show that the exterior derivative has the following basic properties:

- $d\left(\omega_{1}+\omega_{2}\right)=d \omega_{1}+d \omega_{2}$ whenever ω_{1}, ω_{2} are two forms on \mathbb{R}^{n}
- If ω is a k-form on \mathbb{R}^{n}, then $d(\omega \wedge \theta)=d \omega \wedge \theta+(-1)^{k} \omega \wedge d \theta$
- If $f: \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$ is smooth and ω is a k-form on \mathbb{R}^{m}, then $d\left(f^{*} \omega\right)=f^{*}(d \omega)$.

5. Consider the winding form

$$
\omega=\frac{-y}{x^{2}+y^{2}} d x+\frac{x}{x^{2}+y^{2}} d y
$$

defined on $U=\mathbb{R}^{2} \backslash\{0\}$. Show that ω is a closed form on U. Recall that we know from Exercise Two 4 that it is not exact.

