COURSE PLAN ### Foundations of ICT for Lawyers and Policy Workers DIGITAL TRUST IN INTERNATIONAL AND HUMANITARIAN LAW Beta course in collaboration with ICRC — March 25–29, 2019 #### Overview #### Monday, March 25 • Think "digital trust" • Refresher: writing programs Refresher: networks and the webRefresher: traditional cryptography #### Tuesday, March 26 Cybersecurity #### Wednesday, March 27 - Cybersecurity (case study) - ML and big data #### Thursday, March 28 - ML and big data (continued) - ML and big data (case study) #### Friday, March 29 - ML and big data (case study, continued) - Modern crypto - Blockchain and smart contracts Note that this course plan is subject to change, including in the topics covered and the identify of instructors. It is provided for information only. A final course plan will be provided to attendees at the beginning of the course. ## Monday, March 25: Reviewing the Fundamentals | 09:00 | Welcome | Dubochet | |-------|--|----------| | 10:30 | Understanding Digital Trust | and | | ٥ | What is "digital trust" and how understanding it is becoming essential
for data protection lawyers and policy advisers | Marelli | | | The stakeholders of a digital trust ecosystem | | | | Understanding the context: threat modelling | | | | A lawyer's role | | | 10:45 | Refresher: writing programs | Dubochet | | 12:15 | How computers are instructed to complete tasks | | | | Connecting modules to make software systems | | | | How vulnerabilities arise in software (and how hard is it to prevent?) | | | | Debugging and testing | | | | A programmers' work in practice (and how to tell if she's good) | | | | Software best practices and standards | | | | Security by design | | | | Open source and verifiability | | | 13:15 | Refresher: networking and web technologies | Monod | | 15:15 | From hardware to software: network layers | | | ٥ | How to scale from computer-to-computer connections to the global
Internet? | | | | Vulnerabilities in networks and the Internet | | | | Focus on DNS and its vulnerabilities | | | | The Web: pages as software | | | | Vulnerabilities on web pages | | | | Who controls the Internet? | | | 15:30 | Refresher: cryptography basics | Monod | | 17:00 | What does cryptography do: confidentiality, data integrity, | | | | authentication, non-repudiation | | | | Encryption in transit, at rest, and in process | | | | Typology of encryption techniques and of their vulnerabilities | | | | Why is "real" cryptography always weaker than in theory? | | | | How much cryptography on the (public) Internet, and how secure is it? | | | | Who controls cryptography? | | ## Tuesday, March 26: Cybersecurity | 09:00 | Cybersecurity: the big picture | Bost | |----------|--|--------| | 10:30 | The "attack surface" of an organization | | | ١ | Who are hackers, and what are their motivations? | | | 10:45 | Understand the cyber kill chain: methodology of an attack | | | 11:15 | Threat modelling: evaluate cybersecurity relative to threat | | | | The life-cycle of a vulnerability: zero-day, patching cycle, etc. | | | | That other vulnerability: phishing and social engineering | | | | What happens on a compromised computer: new vulnerabilities, data | | | | collection, use as attack vector, etc. | | | | Selecting software and services for security (best practices for | | | | evaluation, certification, sourcing) | | | | The role of security providers (MSSP) | | | 11:15 | Network security | Bost | | 12:45 | The Internet as your computer: Saas, Paas, clouds, etc. | | | ₹ | Where is data located, and how to know in practice? | | | | The network as a battlespace: vulnerability scanning, packet | | | | inspection, intrusion detection, etc. | | | | A secure space in your network: firewalls, air gaps and other "barriers" | | | | Making a private place on the Internet with cryptography: https, VPNs, | | | | cloud encryption | | | 13:45 | Attributing cyberattacks | Bost | | 14:45 | What is attribution and why does it matter? | | | ٥ | How does attribution take place, and how well does it work? | | | | Computer forensics basics | | | | Trustworthiness of attribution: understand the principles and the | | | | actors | | | | "false flag" operations | | | 15:00 | Cyberwarfare operations | Rickli | | 17:00 | State-sponsored cyberwarfare: who's who? | | | | The tools of cyberwarfare | | | | Cyberwarfare case studies: from Iran's uranium centrifuges to the | | | | Ukrainian power grid | | | | The geopolitics of the Internet | | ## Wednesday, March 27 ### Cybersecurity (continued) | 09:00 | Case study in groups: cyberattack/defense scenario | ICON | |----------|--|--------| | 10:30 | Role play between "defenders" and "hackers" | | | ٥ | Expert assess groups' choices and discusses potential outcomes | | | 10:45 | | | | 12:45 | | | | <u> </u> | | | | | Machine Learning and Big Data | | | 13:45 | Big Data | Aberer | | 14:45 | Back to basics: what is data and where does it come from? | | | | Big data is more data, coming faster, and with less structure | | | | The "revolution" of mass data collection and of the Internet of Things | | | | Storing data: from your computer to your network, to the cloud | | | | Who owns data, who controls data? | | | 14:45 | AI: understanding machine learning (ML) | Aberer | | 15:45 | Why is AI fashionable again (and what is ML)? | | | ٥ | Out-of-the box examples: face recognition, text recognition, image | | | | labelling | | | | A machine's learning process: basic notions | | | | Supervised vs. unsupervised learning | | | | Learning in the lab vs. learning in the field | | | | Overview of key techniques: neural networks (and deep learning), | | | | Bayesian statistics, decision trees (to be decided by teacher) | | | | Which tasks is ML good at today? Which will it be tomorrow? | | | 16:00 | Trust in social networks | Aberer | | 17:00 | Social networks as a global phenomenon | | | | Using social network's big data to learn about beneficiaries | | | | The risks of using social network's big data | | | | Using social networks to engage with beneficiaries | | | | "Fake news": what can you trust? | | | | State of the technology to detect fake news | | | | Fake news factories as state-sponsored cyberwarfare | | # Thursday, March 28: Machine Learning and Big Data | 09:00 | Biases | Troncoso | |-------|---|----------| | 10:00 | The impact of biased data in humanitarian action | | | ١ | Data with pre-existing biases | | | | Biases in data collection | | | | How analytics can emphasize biases | | | | Identifying and correcting biased analytics | | | | Does anonymization help fight biases, or does it make it harder? | | | | Explaining the outcomes of AI | | | 10:15 | Privacy and Data Protection | Troncoso | | 11:45 | Confidential data, personal data, sensitive data, with a specific focus on
humanitarian scenarios | | | | Techniques to make data "safe": "anonymization", de-identification (and
re-identification), pseudonymization, hashing (and salting), aggregation,
mashing, etc. | | | | Why is anonymization hard, and what to do about it? | | | | Privacy issues of metadata | | | | The politics of privacy and the commercialization of data | | | | Commercial and Government "big data surveillance" | | | 11:45 | Securing Data | Troncoso | | 12:45 | How to identify personal data that is collected, generated or processed? | | | • | Understanding the threat model | | | | Data minimization principles | | | | Mitigation measures (and how to evaluate their effectiveness) | | | L3:45 | Digital trust implications of Al | Troncoso | | 14:45 | Is it just data an alytics with fancy techniques (answer: no)? | | | | ML as a specific vulnerability: faking data, influencing learning | | | | How to protect ML processes? | | | 14:45 | Applying ICRC's Data Protection Impact Assessment (DPIA) for data analytics | Marelli | | l5:15 | and big data | | | L5:30 | ML and data protection case study | Aberer | | 17:00 | Presentation of the scenario | and | | | Work in group | Troncoso | ### Friday, March 29 ### Machine Learning and Big Data (continued) | 09:00 | ML and data protection case study (continued) | Aberer | |---------|---|----------| | 10:30 | Work in group: continues | and | | ١ | Class discusses each group's assessment | Troncoso | | 10:45 | | | | 12:15 | | | | <u></u> | | | | | | | | | Looking Forward | | | 13:15 | Trends in modern cryptography | Aumasson | | 14:30 | The limits of "classical" cryptography | | | ١ | Gaining forward secrecy | | | | Is quantum computing a crypto-killer (and what to do about it)? | | | | Regaining trust in the cloud with homomorphic encryption | | | | Case study on homomorphic encryption (hype of reality?) | | | 14:45 | Blockchains and smart contracts | Aumasson | | 16:00 | Blockchain concepts: distributed ledger, co-authority, etc. | | | | Balancing nonrepudiation with rectification, deletion, or objection | | | | Smart contracts: the blockchain as a program | | | | How much can you trust blockchains? | | | | Private data on the blockchain: encryption and access control | | | | Rectification, deletion, objection | | | | Connecting the blockchain to the real world | | | | Case study on blockchain (hype of reality?) | | | 16:00 | Wrap-up | Dubochet | | 17:00 | Take home messages on digital trust today and tomorrow | And | | | Feedback on the course | Marelli |