
Multithreading	– recap

• Divide	work	between	multiple	threads

• Locate	shared	data	and	accesses	to	it	– critical	
sections

• Synchronize	with	one	big	lock	

• Optimize	with	fine-grain	locks	and	privatization	



A	good	critical	section

• Mutual	exclusion	– 1	thread	at	a	time	in	critical	section

• No	delays	– If	no	thread	holds	the	lock	and	a	thread	arrives	at	
the	critical	section,	it	should	acquire	it	immediately

• Eventual	entry	– At	the	end,	every	process	that	wants	to	
execute	code	in	the	critical	section	will	succeed

• No	deadlock– at	least	one	process	will	acquire	the	lock	before	
the	critical	section



Deadlocks	– example

• P1	acquires	lock	for	A	and	P2	acquires	lock	for	B

• P1	tries	to	acquire	lock	for	B	before	releasing	lock	on	A	and	P2	tries	to	acquire	lock	on	A	before	
releasing	lock	on	B

• Both	will	wait	forever

pthread_mutex_t	mutex1,mutex2;
int	a=b=0;

void	P1(){
pthread_mutex_lock(&mutex1);
a++;
pthread_mutex_lock(&mutex2);
b++;
pthread_mutex_unlock(&mutex2);
pthread_mutex_unlock(&mutex1);

}

void	P2(){
pthread_mutex_lock(&mutex2);
b++;
pthread_mutex_lock(&mutex1);
a++;
pthread_mutex_unlock(&mutex1);
pthread_mutex_unlock(&mutex2);

}

Problem:	Two	processes	increment	A	and	B	acquiring	 locks	before	the	increment



Dining	Philosophers

Aristotle

Kant

Spinoza Freud

Jung



The	problem
Aristotle

Kant

Spinoza Freud

Jung

• 5	philosophers	– processes

• 5	forks	– shared	resources	– only one	philosopher	can	hold	a	
fork	at	a	time	

• Each	philosopher	thinks	then	eats

• Needs	to	have	both	forks	in	order	to	eat	– lock	on	each	fork	
(mutex)	



Naïve	solution	

while(true)	 {
for(int	i	=	0;	i<numPhilosophers;	 i++){
philosophers[i].think();

pthread_mutex_lock(fork[i]);
pthread_mutex_lock(fork[(i	 - 1)	%	numForks]);

eat();

pthread_mutex_unlock(fork[i]);
pthread_mutex_unlock(fork[(i	 - 1)	%	numForks]);

}
}

Every	philosopher:
• Thinks,		
• Tries	to	acquire	lock	on	right	fork		
• Tries	to	acquire	lock	on	left	fork,
• Eats
• Releases	forks

Problems?



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung



while(true)	 {
for(int	i	=	0;	i<numPhilosophers;	 i++){
philosophers[i].think();

if(i%2	==	0){
pthread_mutex_lock(fork[(i	 - 1)	%	numForks]]);
pthread_mutex_lock(fork[i]);

}
else{
pthread_mutex_lock(fork[i]);
pthread_mutex_lock(fork[(i	 - 1)	%	numForks]);

}

eat();

pthread_mutex_unlock(fork[i]);
pthread_mutex_unlock(fork[(i	 - 1)	%	numForks]);

}
}

To	avoid	deadlock	– change	order	of	acquiring	
locks



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4



Deadlock	- if	all	acquire	their	right	fork	

Aristotle

Kant

Spinoza Freud

Jung

0

1

2 3

4

Free	fork!


