
14/03/2019

1

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Regularization and Tricks of the Trade in deep networks

Objectives for today:

- Bagging

- Dropout

- What are good units for hidden layers?

- Rectified linear unit (RELU)

- Shifted exponential linear (ELU and SELU)

- BackProp: Initialization

- Linearity problem, vanishing gradient problem, bias problem

- Batch normalization

Reading for this lecture:

Goodfellow et al.,2016 Deep Learning

- Ch 7.4, 7.8, 7.11 and 7.12,

- Ch. 8.4

Paper: Klaumbauer, …, Hochreiter (2017)

Self-normalizaing neural networks

https://arxiv.org/pdf/1706.02515.pdf

Further Reading for this Lecture:

https://arxiv.org/pdf/1706.02515.pdf

14/03/2019

2

review: Artificial Neural Networks for classification

input

output

car dog

Aim of learning:

Adjust connections such

that output is correct

(for each input image,

even new ones)

Previous slide.

We use an artificial neural network, with multiple layers. This week we will address

three important questions.

14/03/2019

3

𝑤𝑗,𝑘
(1)

𝒙𝝁 ∈ 𝑅𝑁+1

Review: Multilayer Perceptron

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑎

1

0

𝑔(𝑎)

Previous slide.

In each layer, neurons perform a nonlinear transform g(a).

14/03/2019

4

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:

for a= 3: g(3) =0.95

for a=-3: g(-3)=0.05

𝑔 𝑎 =
1

1 + 𝑒−𝑎

Review. sigmoidal output = logistic function

Previous slide.

Based on systematic probabilistic arguments, we have concluded that in the output

layer, a good choice is the sigmoidal (for single outputs or multiple attributes) or the

softmax function (for exclusive multi-class output).

14/03/2019

5

𝒙 ∈ 𝑅𝑁+1

 𝑦1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

output layer

use sigmoidal unit (single-class)

or softmax (exclusive mutlti-class)

Review: Modern Neural Networks

hidden layer

use rectified linear unit in N+1 dim.

f(x)=x for x>0

f(x)=0 for x<0 or x=0

Why?

Better choices?

Previous slide.

Why we should use in the hidden layer a rectified linear function is less obvious.

14/03/2019

6

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Rectified Linear (RELU) vs. Sigmoidal

f(a)=a for a>0

휀 𝛼

a

Previous slide.

Indeed, there are other choices. We could also use a sigmoidal unit in the hidden layer.

14/03/2019

7

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Exponential Linear vs. Sigmoidal

f(a)=a for a>0

휀 𝛼

a

+1

-1

f(a)=exp(a)-1 for a<0

Previous slide.

… or a shifted exponential-linear function which is bounded from below by -1 and

continues linearly for x>0: Shifted Exponential Linear Unit (ELU).

To understand the differences in functionality in the context of the BackProp algorithm,

it will be important to focus on values

x = ±휀
where epsilon is a small number. But also at values

x = ±𝛼
with alpha of order one.

14/03/2019

8

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Exponential Linear (ELU) vs. Sigmoidal

Shifted ReLU (SReLU)

Leaky ReLu (LReLU)

Clevert et al.

ICML 2016

Previous slide.

To complete the picture, we can also consider a Shifted Rectified Linear Unit (SReLU)

Or the

piecewise linear with positive slope for x<0, the Leaky Rectified Linear Unit (LReLU).

14/03/2019

9

What are good models for hidden neurons?

… and why?

Question 1 for this week:

Previous slide.

The question will be addressed in part 4, today, starting with slides 91.

To answer this question, we will look at the BackProp algorithm and focus on values

x = ±휀
where epsilon is a small number. But also at values

x = ±𝛼
with alpha of order one.

14/03/2019

10

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp
output

activity

input

pattern

Previous slide.

In week 2, we have studied the BackProp algorithm with forward

14/03/2019

11

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error

𝛿

Previous slide.

… and backward pass.

14/03/2019

12

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Previous slide.

We emphasized the update of the weights. But so far we did not yet discuss how the

weights are initialized. Why does initialization (or normalization) matter in Backprop?

14/03/2019

13

Why does the initatialization or normalization

matter in backprop?

Question 2 for this week:

Previous slide.

This question will also be addressed in part 4, starting with slide 91.

14/03/2019

14

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

Simple perceptron

imposes a linear

separation

Review: Single-Layer networks/simple perceptron

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

𝑑 𝒙 =

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0𝑎

1

0

𝑔(𝑎)

Previous slide.

In the context of generalization, we have seen that a simple perceptron can only solve

linearly separable problems

14/03/2019

15

Review: Classification as a geometric problem

x
x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

Previous slide.

Whereas a multilayer perceptron is flexible enough to solve complex classification

problems

14/03/2019

16

Review: The problem of overfitting

Big Multilayer perceptrons are flexible and can be

trained by BackProp to minimize classification error

… but is flexibility always good?
x

x

x
x

x
x

x

o
oo
o

o

o o
o

x

x
o

x

x

x

o

o

o

x x
x

x

o
Network has to work on future data:

test data base

Previous slide.

But flexibility can lead to overfitting, unless we use a proper regularization method.

14/03/2019

17

What are good models for regularization?

… and why?

Question 3 for this week:

We start with this question!

Previous slide.

We have already seen two powerful regularization methods, early stopping and L2 (or

L2) norm penalty on the weights, but there are other regularization methods that are

widely used in applications of neural networks.

The question of additional regularization method will be addressed in part 1 today,

starting now

14/03/2019

18

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

Previous slide.

Bagging is a regularization method, that we will discuss now.

14/03/2019

19

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

Simple perceptron

imposes a linear

separation

1. Bagging Example: simple perceptron

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

𝑑 𝒙 =

𝑘

𝑤𝑘 𝑥𝑘 − 𝜗 = 0𝑎

1

0

𝑔(𝑎)

Previous slide.

To introduce bagging, we start with the simple perceptron as an example.

The simple perceptron imposes a linear separation of positive and negative examples.

14/03/2019

20

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

1. Bagging Example: simple perceptron for noisy data

vector x

𝑤𝑖𝑘

𝑥𝑘

 𝑦 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

o

o
x

x

Find best (approximate) linear

separation𝑎

1

0

𝑔(𝑎)

Previous slide.

In the following we work with noisy data and use a sigmoidal in the output.

14/03/2019

21

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

1. Bagging Idea: (i) Repeat variants of your model K times

 𝑦 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

o

o
x

x

Find best (approximate) linear

separation

…

Previous slide.

We work with K repetitions of the simple perceptron

14/03/2019

22

x
x

x

xx
x

x
ooo
o o
o

o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data

 𝑦1 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

o

o

x

x

Find best (approximate) linear

separation

…
x

Previous slide.

… where each variant (i.e. each copy of the simple perceptron) is optimized for a

different subset of the data; from the first variant

14/03/2019

23

x
x

x
x

x

xx

ooo
o o
o

o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data

 𝑦2 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

oo

x

x

Find best (approximate) linear

separation

…

Previous slide.

… or the second one

14/03/2019

24

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

1. Bagging Idea: (ii) Each Variant sees different subsets of data

 𝑦𝐾 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑘 𝑤𝑘 𝑥𝑘 − 𝜗]

o

o
x

x

Find best (approximate) linear

separation

…

Previous slide.

… or the last one.

14/03/2019

25

x
x

x
x

x
xx

ooo
o o
o

o

o
x

x

o

1. Bagging Idea: (iii) Average over all K variants

o

o
x

x

Find average (nonlinear)

separation

…

1/K
1/K

1/K

+

 𝑦𝑏𝑎𝑔 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘

Previous slide.

Rather than looking for a single copy of the simple perceptron that would be the ‘best’ in

some sense, we take all K copies in parallel and average their outputs.

14/03/2019

26

1 Generate K different training sets

for k=1,…,K

pick 𝑃1 times into your data set with replacement

(your can pick the same data point several times)

2 Initialize K different variants of your model

3 Train model k on data set k up to criterion

4 For a future data point (test set)

for k=1,…,K

put input x into model k, read out

5 Report average

1. Bagging : Algorithm

Given: Training data set 𝒙𝜇, 𝑡𝜇 , 1 ≤ 𝜇 ≤ 𝑃1 ;

 𝑦𝑘

 𝑦𝑏𝑎𝑔 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘

Previous slide.

Pseudoalgorithm for bagging.

Steps 1-3 describe training.

Steps 4-5 describe testing (or final application).

14/03/2019

27

1. Bagging: Theory

 𝑦𝑘 = 0.5[1 + 𝑡𝑎𝑛ℎ 𝑗 𝑤𝑗 𝑥𝑗 − 𝜗]

Model k

…

d𝑘
𝜇

= 𝑡𝑘
𝜇
− 𝑦𝑘

𝜇
= s(a)

x
x

x
x

x
x

x

o oo
o

o

o

o

o

x

x

o

o

o
x

xa

Blackboard: Bagging

1
𝑔(𝑎)

 𝒚𝐛𝐚𝐠 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘

Bagged output

Previous slide.

Bagging is supported by a theoretical analysis.

Suppose the actual output of copy k of the model is 𝑦𝑘
𝜇

while the target output is 𝑡𝑘
𝜇

(either zero or one)

We introduce the signed difference

which is some function of the distance a of the data point from the separating

hyperplane. Toward the end of learning d𝑘
𝜇

will be small, but can be positive or negative.

We are interested in the quadratic error in the output of copy k:

We compare this error with the quadratic error E𝑏𝑎𝑔 of the total ‘bagged’ output

d𝑘
𝜇

= 𝑡𝑘
𝜇
− 𝑦𝑘

𝜇
= s(a)

 𝑦
𝜇

=
1

𝐾

𝑘=1

𝐾

 𝑦𝑘
𝜇

E𝑘 =
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
]2

14/03/2019

28

1. Bagging : Theory Blackboard: Bagging

Claim: bagged output has smaller quadratic error

than a typical individual model

 𝒚𝐛𝐚𝐠 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘bagged output

Previous slide.

14/03/2019

29

1. Bagging : Result

assumption: the average delta-difference, defined as
1

𝑃
 𝜇=1

𝑃 [d
𝑘

𝜇
] = d

is the same for all K copies of the model.

THEN

- bagged output has smaller quadratic error

than a typical individual model

- if all K individual models are uncorrelated, the gain

in performance scales as 1/K

Previous slide.

Thus, using a bagged output is always better than using the output of a single model.

NOTE: the assumption is rather natural. If all K models are trained with the same

learning algorithm, same error function, and same regularization, there is no reason

that the average delta-difference would be bigger for one model than the other, if the

average is over many data points (apart from statistical fluctuations).

NOTE: with a suitable error function, the average delta-difference might even be zero.

NOTE: the assumption is nevertheless a bit special because we say that the average

delta-distance should be identical for all copies of the model --- as opposed to the

average squared-delta distance.

14/03/2019

30

1. Bagging: each of the models can be a deep network

…

1/K
1/K

1/K

+

 𝑦 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘

Previous slide.

Bagging does not only work for simple perceptrons, but also for multi-layer neural

networks. You simply need to train the networks separately and then average their

outputs.

Note that averaging over the output is identical to adding an additional linear output

neuron on top of the existing networks, so that instead of K copies of a smaller network

we can also view it as a single larger network.

14/03/2019

31

1. Bagging: each of the models sees a different data set

…

1/K
1/K

1/K

+

 𝑦 =
1

𝐾

𝑘=1

𝐾

 𝑦𝑘

Goodfellow et al.

2016

Previous slide.

As an illustration of bagging, Goodfellow et al. give the following example.

The task is to build a detector for eights, ‘8’.

One member of the ensemble (i.e., one copy of the network) is exposed of a data set

which contains many sixes and eights (plus possibly a few nines). It therefore learns to

build a detector that mainly focuses on the upper half of the input images.

Another copy of the network is exposed to a data based which contains many many

nines as well as a eights (and also possibly a few sixes). It therefore learns to build a

detector that mainly focuses on the lower half of the input images.

Once you average of the results of different copies of the network, you get a better

detector of eights, than any single network alone.

14/03/2019

32

Quiz:

[] If you want to win a machine learning competition,

it is better to average the prediction on new data

over ten different models, rather than just using the model

that is best on your validation data.

[] If you want to win a machine learning competition,

it is better to hand in 10 contributions (using different author names)

rather than a single contribution

[x]

[x]

Your notes.

14/03/2019

33

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

Previous slide.

Dropout is a regularization method that has been specifically developed for neural

networks. It is very loosely related to bagging.

14/03/2019

34

2. Dropout: suppress 50 percent of hidden units during training

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

Remember that in all cases where we want to use regularization, we start with a

network that is too flexible (too many neurons and layers) so that we would see

overfitting without regularization.

We therefore start with a big and flexible network. During training, you randomly

suppress, for each input pattern, 50 percent of the hidden units.

14/03/2019

35

2. Dropout: suppress 50 percent of hidden units during training

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

Thus for pattern number m you randomly pick a subset of hidden units which you

remove (their outputs are set to zero).

14/03/2019

36

2. Dropout: suppress 50 percent of hidden units during training

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

And for pattern number m m you randomly pick each time a different subset of

hidden units which you remove (their outputs are set to zero).

14/03/2019

37

2. Dropout: suppress 50 percent of hidden units during training

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Previous slide.

You train over many epochs.

14/03/2019

38

2. Dropout: use full network for validation and test

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

For test:

- full network

- but multiply output weights

from hidden units

by 1/2

 Total input to each unit is roughly

same as during training

Previous slide.

For testing you use the full network with all hidden units.

However, since there are now twice as many hidden units as during training, you need

to multiply the output weights by factor ½, so that the typical input to a unit in the next

layers is roughly the same as during training.

14/03/2019

39

2. Dropout: two different interpretations

1. An approximate, but practical

implementation of bagging

2. A tool to enforce representation sharing

in the hidden neurons

Previous slide.

Dropout is an effective regularization method. There are two different interpretations of

why dropout works.

14/03/2019

40

2. Dropout as approximate bagging

Differences to standard bagging:

- not a fixed data base for each ‘dropout’ configuration

- models not independent: share weights

- output not a ‘sum over model outputs’

Dropout can be seen as a practical application

of the ideas of bagging to deep networks

Previous slide.

The first interpretation sees dropout as a practical implementation of the ideas of

bagging to deep networks.

Note that dropout implements ideas of bagging not just for the output layer, but also for

neurons in the hidden layer.

The main differences to standard bagging are:

1. not a fixed data base for each ‘dropout’ configuration.

In a network with Nh hidden neurons, there are

(Nh !)/[(Nh /2)! (Nh /2)!] different dropout configuration.

If the same configuration reappears, it will be trained with a different input pattern.

2. models not independent, because they share weights.

In bagging, models are first trained independently and only combined at the end.

Here, each pair of configurations shares half the neurons.

3. output not a ‘sum over model outputs’

In dropout, the output can be a sigmoidal unit.

14/03/2019

41

2. Dropout as forced feature sharing

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

xx x

x

x

xx
x

Feature sharing:

Take 2 times as many neurons,

But make sure they all solve

similar tasks

‘robust’

Previous slide.

The second interpretation is: Dropout is a tool to enforce representation sharing in the

hidden neurons.

To understand this statement, let us focus on the red neuron somewhere inside the

network. It receives inputs from the four blue hidden neurons one layer below. Each of

the blue neurons represents a hyperplane in input space (or more generally: in the

space of the previous hidden layer).

The red neurons takes a weighted average over the output of the blue neurons which

corresponds to a nonlinear separation in the input space as indicated by the dashed red

line.

Suppose now that we add another four blue neurons in the first hidden layer.

Droout forces them to learn very similar separating hyperplanes: for example we add

two neurons, but remove at the same time two of the old ones. The two new ones will

take over the role of those that they have to replace, but they might implement slightly

different hyperplanes. Hyperplanes can be interpreted as features.

In the end, the set of eight neurons will share features, by implementing similar

hyperplanes.

14/03/2019

42

2. Dropout: two different interpretations

1. An approximate, but practical

implementation of bagging

2. A tool to enforce representation sharing

in the hidden neurons

 useful regularization method,

 simple to implement

Previous slide.

In practice, dropout is a useful regularization method because it is simple to implement.

14/03/2019

43

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

3. Other simple regularization methods

Previous slide.

Just to complete the picture, we need to discuss a few other simple regularization

methods.

14/03/2019

44

3. Other easy regularization methods: dataset augmentation

Goodfellow et al. 2016

Previous slide.

Dataset augmentation is a simple regularization method. You start with a dataset of P

data points.

For each data point you apply a few transformations. For the case of images, these are:

1. An image is laterally, vertically, or diagonally shifted (you need to fill in the

background to do so). The new images are added to the data base (with the same

label)

2. An image is flipped. The new image is added to the data base (the the same label).

3. You add pixel noise (white or locally correlated). The new images are added to the

data base (with the same label).

4. You apply one or several elastic deformations. The new images are added to the

data base (with the same label).

5. You slightly shift the color scheme. The new images are added to the data base

(with the same label).

Thus, a single image gives rise to twenty or more images. The transformations must

correspond to the known invariances: a butterfly remains a butterfly if it is shifted, if the

background illumination changes, if its shape changes slightly, etc.

14/03/2019

45

3. Other easy regularization methods: early stopping

Go back to weights where validation error was minimal

Example: MNIST data base, see Goodfellow et al. 2016

Previous slide.

Early stopping is also a regularization method that is easy to implement. Note that you

have to continue for a LONG time, before you can go back to the best weights. This is

necessary because the validation loss could make (together with the training loss) a big

jump downward a long time after having passed through a first minimum.

This is not the case for the MNIST data base shown here because the training loss is

already practically zero.

14/03/2019

46

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

3. Other simple regularization methods

4. Weight initialization and choice of hidden units

Previous slide.

We now focus on the hidden neurons.

14/03/2019

47

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

4. Choice of units

f(x)=x for x>0

휀 𝛼

a

-different patterns give different activation

of same neuron (red)

-same input pattern gives different activation

of different neurons (red, blue)

Previous slide.

Let us focus on the red neuron in one of the hidden layers.

If I apply pattern m , the total activation a of the red neuron might be a.

If I apply pattern m, the total activation a of the red neuron might be -e.

If I apply pattern m2, the total activation a of the red neuron might be +e.

Etc.

Thus different patterns cause different activation values of same neuron (red)

On the other hand,

If I apply pattern m, the total activation a of the red neuron might be a,

and the total activation a of the blue neuron might be -2a.

Etc.

Thus the same patterns causes different activation values for different neuron.

Let us keep this in mind for the following discussions.

14/03/2019

48

4. Initialization (input layer) Blackboard

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Normalization of data base:

(1) < 𝑥𝑗 >= 1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0

Random initialization of weights:

(2)

How should you choose the variance?

< 𝑤𝑖𝑗
(𝑛)

> = 0

Previous slide.

Let us now focus on a single neuron (red), and look at different input patterns.

We suppose that patterns in the data base have been pre-treated in a normalization

step so as to ensure that for each component (e.g. each pixel) the empirical mean

across all patterns is zero.

We will initialize the weights by drawing weight values randomly and independently

from a Gaussian distribution with mean zero, so that the expectation value is:

We ask the question: how should we choose the variance of the initial weight

distribution?

< 𝑥𝑗 >= 1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0

< 𝑤𝑖𝑗
(𝑛)

> = 0

14/03/2019

49

Blackboard: Initialization

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

Claim: square root of N is important

Your notes.

14/03/2019

50

4. Initialization (input layer)

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

 Distribution of 𝑥𝑗
(1)

in layer 1

Normalization of data base:

(1) < 𝑥𝑗 >= 1

𝑃
 𝜇=1

𝑃 𝑥𝑗
𝜇

=0

Random initialization of weights:

(2)

And standard deviation propto

< 𝑤𝑖𝑗
(1)

> = 0

1/ 𝑁

 Distribution of 𝑥𝑗
(𝑘)

in layer k

Previous slide.

Appropriate random initialization of the input weights (layer 1), gives an expected

activation

and a standard deviation

< [𝑎
𝑖

1
]2 > = 2

As a result we will have a suitable distribution of values 𝑥𝑗
(1)

in layer 1.

Random initialization of weights in layer 2, gives a distribution of activation 𝑎𝑗
2

in layer

2, which in turn are transformed into a distribution of values 𝑥𝑗
(2)

in layer 2; and this

process continues (see Exercises this week).

< 𝑎𝑖
(1)

>= 1

𝑃
 𝜇=1

𝑃 𝑤𝑖𝑗
(1)

𝑥𝑗
𝜇

=0

14/03/2019

51

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp
output

activity

input

pattern

Previous slide.

In the forward pass, we need to evaluate

Now we can use the same argument as previously used for the input layer. For neuron j

in layer n, the value 𝑥𝑗
(𝑛)

will depend on the pattern so that we have a distribution of

values across different patterns.

𝑥𝑗
(𝑛)

= 𝑔[

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]

14/03/2019

52

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp Calculate output error

𝛿

Previous slide.

In the backward pass, we need to evaluate

𝑔′ 𝑎𝑗
𝑛

= 𝑔′[

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]

14/03/2019

53

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

BackProp update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Previous slide.

Before we finally update the weights.

14/03/2019

54

Why does the initatialization or normalization

matter in backprop?

Previous slide.

So why is the initialization of the weights so important?

Analogously, whey is the normalization of the weights so important?

14/03/2019

55

4. Forward pass: Linear and nonlinear processing

input

pattern
𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

휀

a

𝛼−𝛼
−휀

Previous slide.

As we have seen,

If I apply pattern m , the total activation a of the red neuron might be a.

If I apply pattern m, the total activation a of the red neuron might be -e.

If I apply pattern m2, the total activation a of the red neuron might be +e.

Etc.

Thus different patterns cause different activation values of same neuron (red)

14/03/2019

56

4. Forward pass: Linear and nonlinear processing

Observations:

if all patterns in all layers touch the linear

regime of g(a), then the whole network is linear

 different patterns should touch different regions

of g(a).

- this is automatically true for ReLu,

if the mean (across patterns) is a=0

- this is automatically true for sigmoidals, if

the variance (across patterns) is > 2

휀

a

𝛼−𝛼
−휀

Previous slide.

Suppose that we work with the sigmoidal unit (black)

If all the patterns cause activations in the range [-ee], then all the patterns fall in the

linear regime of the gain function g.

Suppose that we work with the ReLu (red).

If all the patterns cause activations in the range [ea], then all the patterns fall in the

linear regime of the gain function g.

In both cases, the result is that this neuron implements a linear transformation (because

its nonlinearity is not exploited). However, a multi-layer network of linear units can

be replace by a single layer of linear units. Therefore the additional layers are

useless.

To exploit the nonlinearities of the neurons, we have to make sure that:

- For sigmoidals, some of the input patterns cause activations |a|>2.

- For ReLu’s, some of the input patterns case positive a, others negative a.

14/03/2019

57

https://en.wikipedia.org/wiki/Logistic_function

Rule of thumb:

for a= 3: g(3) =0.95

for a=-3: g(-3)=0.05

𝑔 𝑎 =
1

1 + 𝑒−𝑎

Review. sigmoidal output = logistic function

Previous slide.

Note that a sigmoidal unit is strongly nonlinear in the regime |a| = 2.

14/03/2019

58

4. Forward pass: exploit nonlinearities (‘linearity problem’)

To exploit nonlinearities of all units in the network, we must

1. Make sure that the initialization of weights is well chosen

 expectation (across patterns) of the activation variable

0 = < 𝑎𝑗
𝑛

>; 𝑎𝑗
𝑛

= 𝑘 𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

 standard deviation of the activation variable

𝑎𝑗
𝑛

of order 1.

2. Make sure that weight updates do not shift mean

(and standard deviation) of distribution too much

Previous slide.

A multilayer network in the linear regime acts like a linear network (‘linearity problem’)

To exploit nonlinearities of all neurons in the network, we have to make sure that

- The initial choice of the weights is such that each unit has a range of activation values

(across different patterns) that touch the nonlinear regime.

- During training the weights remain in a regime such that each unit has a range of

activation values (across different patterns) that touch the nonlinear regime.

Note:

1) for ReLu’s the only nonlinearity is at zero. Thus, if the mean activation (across all

patterns) is zero, we can be sure that some patterns cause positive, and others a

negative a, and the nonlinearity is exploited.

2) For sigmoidals, the nonlinearity is around |a|=2. Thus, if the mean activation (across

all patterns) is zero AND the variance is around 1 or 2, we can be sure that some

patterns cause a big positive, and others a big negative a, and the nonlinearity is

exploited.

14/03/2019

59

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

3. Other simple regularization methods

4. Choice of hidden units and initialization: ‘linearity problem’

5. Vanishing gradient problem

Previous slide.

So far, our arguments have been based on the forward pass. As we will see, similar

arguments can also be applied by studying the backward pass.

14/03/2019

60

𝑤𝑗,𝑘
(𝑁−1)

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(𝑁)

𝑥𝑗
(𝑁−1)

BackProp 𝛿 = 0.5

𝑥𝑗
(𝑁−2)

Previous slide.

As discussed earlier, at each step of the backward pass, a factor

appears

𝑔′𝑗
𝑛

: = 𝑔′ 𝑎𝑗
𝑛

= 𝑔′[

𝑘

𝑤𝑗,𝑘
𝑛

𝑥𝑘
𝑛−1

]

14/03/2019

61

5. Backward pass: Vanishing gradient problem

𝛿𝑖
(𝑛−1)

=

𝑗

𝑤𝑗𝑖
(𝑛)

𝑔
′(𝑛−1)

(𝑎𝑖
(𝑛−1)

)𝛿𝑗
(𝑛)

𝛿𝑖
(1)

~𝑔
′(1)

𝑔
′(2)

…𝑔
′(𝑁−1)

𝛿𝑗
(𝑁)

After N layers: each path contributes

Many terms to be summed,

but most terms are tiny if N large

휀

a

𝛼−𝛼−휀 𝑤𝑗,𝑘
(𝑁−1)

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(𝑁)

𝑥𝑗
(𝑁−1)

𝛿2
(𝑁) = 0.5

𝑥𝑗
(𝑁−2)

Previous slide.

For calculating the deltas in the first layers, we have to sum over the deltas in the

second layer. To find these over those in the third layer etc.

After N-1 layers of backpropagation, starting at the output layer N and finishing in the

first layer, the deltas will contain terms of the form

𝛿𝑖
(1)

~𝑔
′(1)

𝑔
′(2)

…𝑔
′(𝑁−1)

𝛿𝑗
(𝑁)

There are many of these summation paths, but each path contains a multiplication of

several g’. If a single g’ is zero, or if three g’ in a path are very small (say 0.1 each), the

contribution of this path to the total is negligible. Thus there is a risk that the calculated

𝛿𝑖
(1)

is very close to zero. This is called the vanishing gradient problem.

The more layers we have in a network, the higher the risk of a vanishing gradient.

14/03/2019

62

5. Vanishing gradient problem

Observations:

- for each single path many terms g’

- g’ is small for sigmoidal at −𝛼 or +𝛼 (|a|=4)

- g’ vanishes for ReLu if one inactive unit sits in path

- g’=1 for all ReLu on ‘active paths’

 for ReLu highly active forward paths coincide

with good gradient transmission on backward path

휀

a

𝛼−𝛼−휀

Previous slide. To summarize

For sigmoidal units, we ideally need for a given pattern m that for most units

1. for most units on a path |a| < 3 so as to make sure that the g’ in the backward

pass is not too small.

2. for some units on a path |a| > 2 so as to make sure that the forward pass

exploits nonlinearities.

For Rectified Linear units (ReLu), we ideally need for a given pattern m that for some

paths all units have:

1. |a| > 0 so as to make sure that the g’ in the backward pass is not zero.

2. |a| > 0 so as to make sure that the forward pass goes through; but the same

path should have some units with |a| < 0 when a different pattern is applied so as to

exploit nonlinearities.

Note that the ‘nonlinearity’ argument is by looking at the distribution of activations

across different patterns.

Conclusion: it is easier to avoid the vanishing gradient problem of BackProp when

using ReLu’s.

14/03/2019

63

5. Vanishing gradient problem

Conclusion:

Sucessful forward pass

 needs to avoid the linearity problem.

(‘exploit nonlinearities’)

Successful backward pass

 needs to avoid the vanishing gradient problem.

A good hidden units must be good for

forward and backward pass!

휀

a

𝛼−𝛼−휀

Previous slide.

But it is not so easy to have hidden units that are good on the forward pass and the

backward pass!

14/03/2019

64

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

3. Other simple regularization methods

4. Initialization and choice of hidden units are important.

5. Vanishing gradient problem

6. Weight update: mean input and bias problem

Previous slide.

So far we have focused on forward and backward pass,

but the picture gets even more complicated if we include the weight update step.

14/03/2019

65

6. Weight update step

update all weights

𝑤𝑗,𝑘
(𝑛−1)

𝑤1,𝑗
(𝑛)

𝑥𝑗
(𝑛−1)

𝑥𝑗
(𝑛−2)

𝛿2
(𝑛−1)

Weights onto the same neuron (red)

are all updated with same delta

 if 𝑥𝑗
(𝑛−2)

are all positive,

all the weights onto red neuron

increase or decrease together

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)

Previous slide.

The update formula of the BackProp algorithm

implies that all weights onto the same neuron i (red), share the same 𝛿𝑖
(𝑛−1)

.

This has two implications.

The first one concerns the possible movements of the weight vector, to be discussed

now.

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)

14/03/2019

66

6. Weight update step

update all weights

∆𝑤𝑖,𝑗
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥𝑗
(𝑛−2)

Weights onto the same neuron

are all updated with same delta

 Problem for ReLu and other units with non-negative x

No problem for tanh

No problem for shifted exponential linear Selu

휀
a

𝛼−𝛼−휀

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)

Previous slide.

Assume that we work with ReLu’s, so that all x are non-negative.

Then during the update step, two weights onto the same neuron either move both up

or down together. For example for weights with index j=2 and j=5

If ,then also

Thus changes in direction downward-right, as on the graph

on the right are excluded.

To move downward right, several iterations are necessary,

as shown on the previous slide.

This problem is absent for units with a gain function that has both positive and negative

values. For example, the problem is absent if we choose for the gain function of hidden

units

∆𝑤𝑖,2
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥2
(𝑛−2)

≥ 0 ∆𝑤𝑖,5
(𝑛−1)

= 𝛿𝑖
(𝑛−1)

𝑥5
(𝑛−2)

≥ 0

g(a)= tanh(a)

w

𝑤𝑖,2
(𝑛−1)

𝑤𝑖,5
(𝑛−1)

14/03/2019

67

𝒙 ∈ 𝑅𝑁+1

𝑥𝑗
(1)

𝑤1𝑗
(2)

𝑤𝑗1
(1)

Shifted Exponential Linear (SELU) vs. tanh
g(a)= b a for a>0

휀 𝛼

a

+1

-1

g(a)= g [exp(a)-1] for a<0

g(a)= tanh(a) Standard ELU:

g=b=

Previous slide.

Instead of tanh(a), we can also work with the shifted exponential linear units (ELU) or a

scaled version called SELU. SELU has additional parameters g b

Similar to the ReLu, the ELU and SELU are linear for positive activation values a.

Similar to the tanh-unit (and in contrast to the ReLu), the ELU and SELU are smooth

and also generates negative outputs.

14/03/2019

68

6. Bias problem

update all weights

∆𝑤𝑖,𝑗
(𝑛)

= 𝛿𝑖
(𝑛)

𝑥𝑗
(𝑛−1)

Weights onto the same neuron

are all updated with same delta

 Problem for ReLu and other units with non-negative x

 The mean changes! (‘bias problem’)

But controlling the mean was important for correct initialization!

 Return of vanishing gradient and linearity problem!

Before update

after update

𝑎𝑖
(𝑛)

=

𝑗

𝑤𝑖𝑗
(𝑛)𝑥𝑗

(𝑛−1)
− 𝜗

𝑎𝑖
(𝑛)

=

𝑗

[𝑤𝑖𝑗
(𝑛)

+∆𝑤𝑖,𝑗
(𝑛)

]𝑥𝑗
(𝑛−1)

− 𝜗

same sign for all j

non-negative

(for ReLu etc)

Previous slide.

As we have seen, the update formula of the BackProp algorithm

implies that all weights onto the same neuron i (red), share the same 𝛿𝑖
(𝑛−1)

.

This has two implications.

The first one concerns the possible movements of the weight vector, discussed above.

The second implication concerns a shift in the mean. If we use a ReLu or a sigmoidal

(where all the x-values are non-negative), then the mean activation changes in each

update step, even if the threshold theta does not change!

However, we have seen earlier that controlling the mean activity (where the mean is

taken over the distribution of patterns) is important to correctly exploit the nonlinearities

of a ReLu. In fact the mean should be close to zero, so that some patterns cause an

activation, and others not.

14/03/2019

69

Quiz:

[] forward propagation with ReLu leaves only a few active paths

[] back propagation with ReLu leaves only a few active paths

[] a non-zero weight update step of ReLu shifts most often the mean

[] forward propagation with ReLu is always linear on the active paths

[] in a ReLu network all patterns are processed with the

same linear filter

[] in a sigmoidal network with small weights (and normalized inputs)

all patterns are processed with the same linear filter

[] in a sigmoidal network with big weights, there are active units in the

forward pass that contribute a vanishing gradient in the backward path

[] in a network with SELU, there are active units in the forward path

which contribute a vanishing gradient in the backward path

[] a non-zero the weight update step of SELU shifts the mean

[x]

[x]

[x]

[x]

[]

[x]

[x]

[]

[]

Your notes.

14/03/2019

70

Shifted Exponential Linear vs. tanh

Previous slide.

The generalized ‘Shifted exponential linear unit’ (SELU) has two parameters, b> g>:

The orange curve shows that the SELU starts at values below (-1) and, for positive a,

increases slightly faster than the RELU.

The SELU parameters beta and gamma are chosen such as to minimize the bias

problem, as well as the linearity and vanishing gradient problem.

g(a)= b a for a>0

g(a)= g [exp(a)-1] for a<0

14/03/2019

71

Shifted Exponential Linear (SELU)

Previous slide.

A network learns faster with SELU as hidden units. The test error after convergence is

not affected. The training time is shorter because many of the problems such as

vanishing gradient, unexploited nonlinearities, or shifting mean that plague learning

during the initial epochs are minimized.

14/03/2019

72

6. Conclusion

- initialization is important so as to exploit nonlinearities

- choice of hidden unit is important in initial phase of training

- ReLu has disadvantages in keeping the mean

 batch normalization

- Tanh has problems with vanishing gradient

- Sigmoidal has problems with vanishing gradient and mean

- SELU solves all problems and is currently best choice

Paper: Klaumbauer, …, Hochreiter (2017)

Self-normalizaing neural networks

https://arxiv.org/pdf/1706.02515.pdf

Previous slide.

Thus, if you have the choice, take SELU’s.

The shifting mean can also be addressed by batch normalization, which is the topic of

the next section.

https://arxiv.org/pdf/1706.02515.pdf

14/03/2019

73

Wulfram Gerstner

EPFL, Lausanne, SwitzerlandArtificial Neural Networks: Lecture 4

Tricks of the Trade in deep networks

1. Bagging

2. Dropout

3. Other simple regularization methods

4. Hidden units: linearity problem (exploit nonlinearities)

5. Hidden units: Vanishing gradient problem

6. Weight update: bias problem

7. Batch normalization

Previous slide.

For unbalanced hidden units such as ReLu or Sigmoidals with non-negative outputs,

the mean will shift during training even if we initialize well.

Batch normalization solves this issue.

14/03/2019

74

7. Batch normalization: Idea

Normalize input on each input line

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

𝑤1,𝑗
(2)

𝑥𝑗
(1)

 𝑦2
𝜇

 𝑦1
𝜇

𝑤1,𝑗
(3)

−1 Zoom:

𝑥𝑗
(𝑘)

 𝑥𝑗
(𝑘)

𝑉𝑎𝑟[𝑥𝑗
𝑘

]

𝐸[𝑥𝑗
(𝑘)

]𝑥𝑗
(𝑘)

-
 𝑥𝑗
(𝑘)

=

Previous slide.

At the output 𝑥𝑗
(𝑘)

of each neuron, we add a normalization step:

We calculate the mean and the variance of 𝑥𝑗
(𝑘)

(taken overa batch or minibatch).

Then we renormalize to mean zero and unit variance.

This renormalization step is denoted in the following by a small box in the network

graph.

When you do backprop, the blue box has to be taken into account for both forward and

backward pass.

14/03/2019

75

7. Batch normalization

Ioffe&Szegedi, 2015

Work with minibatch:

Normalize per

minibatch

Previous slide.

The blue box corresponds to a mathematical transformation y=BN(x). BN stands for

Batch Normalization.

Since we are not sure that we want to normalize the mean to exactly zero and the

variance to exactly one, we allow for additional parameters gamma and beta.

These parameters are learned using backprop.

14/03/2019

76

7. Batch normalization Ioffe&Szegedi, 2015

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Previous slide.

Note that it does not make sense to add a normalization step for the thresholds (i.e., the

inputs fixed at -1 in the graph).

14/03/2019

77

7. Batch normalization Ioffe&Szegedi, 2015

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

𝑤𝑗,𝑘
(1)

𝑥𝑘
𝜇

−1

−1

 𝑦1
𝜇 𝑦2

𝜇

𝑤1,𝑗
(2)

𝑥𝑗
(1)

Previous slide.

The normalization steps lead to additional terms in the backprop algorithm which is

directly taken care of (again) by an efficient implementation of the chain rule.

14/03/2019

78

7. Batch normalization

Ioffe&Szegedi, 2015

Previous slide.

The full algorithm of Batch Normalization.

14/03/2019

79

7. Batch normalization Ioffe&Szegedi, 2015

Necessary for ReLu and other unbalanced hidden units

Normalization step in forward pass is also taken care of

during backward pass

Objectives for today:

- Bagging: multiple models help always to improve results!

- Dropout: two interpretations

(i) a practical implementation of bagging

(ii) forced feature sharing

- BackProp: Initialization, nonlinearity, and symmetry

- What are good units for hidden layers?

problems of vanishing gradient and shift of mean

 solved by Shifted exponential linear (SELU)

- Batch normalization necessary for ReLu

14/03/2019

80

The end

