Exercise Four

1. Let $\langle\cdot, \cdot\rangle$ be an iner product on \mathbb{R}^{n}. Show that there is some positive definite symmetric matrix $A=\left(a_{j k}\right)_{j, k=1}^{n}$ such that

$$
\langle v, w\rangle=A v \cdot w, \quad v, w \in \mathbb{R}^{n}
$$

2. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a regular curve. Show that $L(\gamma)$ is independent of the way γ is parametrized.
3. Let $\gamma:[0,1] \rightarrow \mathbb{R}^{n}$ be a regular curve. Show that γ can be parametrized by arc-length, i.e. $|\dot{\gamma}(t)| \equiv 1$ for all t.
4. Let $U \subset \mathbb{R}^{n}$ be a connected bounded open set and let g be a Riemannian metric on U. Show that for each pair of points $x, y \in U$, there exists a curve γ such that γ minimizes the distance, i.e. for any other curve β that connects x and y in U, we must have $L(\gamma) \leq L(\beta)$.
5. Let $U \subset \mathbb{R}^{n}$ be an open connected set and let g be a Riemannian metric on U. We denote by g_{0} the standard Euclidean distance on U. Show that

- For each compact subset $K \subset U$, there exists positive constants c and C such that for all $v \in T_{x} \mathbb{R}^{n}$,

$$
c|v|_{g_{0}} \leq|v|_{g} \leq C|v|_{g_{0}} .
$$

- Show that with the Riemannian distance $d_{g}, U=\left(U, d_{g}\right)$ becomes a metric space whose topology is the same as the Euclidean topology on U.

