Evolutionary Robotics

Companion slides for the book *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies* by Dario Floreano and Claudio Mattiussi, MIT Press

1

A definition

Evolutionary Robotics is automatic generation of robot control systems and morphologies by means of artificial evolution. The control systems are often neural networks.

<u>Two drivers</u>:

- **Engineering**: a tool to investigate the space of possible control strategies and body design for autonomous robots

- **Biology**: A *synthetic* (as opposed to an *analytic*) approach to the study of the mechanisms of adaptive behavior in machines and animals (Braitenberg, 1984)

Evolution of Neural Networks

Genotype can encode:

- 1. <u>Connection Weights</u>: pre-defined network architecture, each weight encoded in separate genes (binary or real-valued), fixed-length genotype
- 2. <u>Topology</u>: variable-length genotype encodes presence/type of neurons and their connectivity
- 3. <u>Learning Rules</u>: fixed or variable length genotype encodes learning rules (constants of polynomial expression of x and y), not weights.

Evolution of Weights

Use real-valued or binary representation Each synaptic weight is represented by one or more genes; e.g.:

synapse strength

Fitness function can be error, as in Back-Prop, or higher-level consequence of network output, such as behavior of a robot

Can be combined with learning:

- learning starts from genetically encoded weights
- fitness measures performance of network after training
- learned weights are not written back into genome

Collision-free Navigation

Fitness =
$$V \times \Delta v \times (1-s)$$

Methodology

Results

The average and best population fitness are typical measures of performance.

Evolved robots always have a preferential direction of motion and speed.

Homing for Battery Charge

Let us now put the robot in a more complex environment and make the fitness function even simpler. The robot is equipped with a battery that lasts only 20 s and there is a battery charger in the arena.

Machine Neuro-Ethology

After 240 generations, we find a robot capable of moving around and going to recharge 2 seconds before the batteries are completely discharged.

Neural Activity Maps

Evolution of complex robots

It is difficult to evolve from scratch large and complex robots because of:

- hardware robustness
- bootstrap problem

Incremental evolution

A solution is to incrementally evolve robots from simple to complex. Simple robots gradually generates solutions that can be adapted to more complex robots faster and better than by starting with a complex robot.

Incremental evolution results

Testing Biological Hypothesis

Reinforcement Learning: Since Pavlov's experiments with dogs, it has been known that positive and negative reinforcement signals are used to learn behaviors

But is synaptic modification really necessary?

T-maze without synaptic modification

Trial 1

Trial 2

Contrast Detection

Vision-based Navigation

Fitness proportional to amount of forward translation over 2 mins

After 30 generations

Neural Dynamics

		Neuron #											
	1	2	3	4	5	6	7	8	9	10			
spikes/s	9	445	453	450	330	40	129	363	0	452			

Vision-based Blimp

- 5 x 5 room, random size stripes
- Fitness = forward motion (anemometer)
- 2 trials, 2 minutes each
- Evolution + network activation on PC
- Sensory pre-processing on microcontroller

Evolved behaviour

Evolved Control Strategy

Steering rate

Amount of perceived contrast

T

Alice Micro-Robot

- microcontroller PIC16F84
- 2mA @ 5V
- 10 hours autonomy
- 2 swatch motors
- 4 proximity sensors
- modular (vision, radio, etc.)

Genetic encoding

Evolution of connectivity and neuron sign only For existing connections, strength = 1

Bit-size Evolution

Forward navigation with obstacle avoidance

Fitness = V x Δv x (1-s)

Visual features

Process whereby visual neurons become sensitive to certain sensory patterns (features) during the developmental process (Hubel & Wiesel, 1959)

Center-Surround

+ + +

Active vision

Process of selecting by motor actions sensory patterns (features) that make discrimination easier (Bajcsy, 1988)

Active Vision

Robot Navigation

<u>Goal</u>: Robot must move around simple arena using <u>only</u> vision information from a pan/tilt camera.

.

Car Driving

<u>Fitness</u> = percentage of covered distance D in R races on M circuits (limited time for each race).

T

Companion slides for the book *Bio-Inspired Artificial Intelligence: Theories, Methods, and Technologies* by Dario Floreano and Claudio Mattiussi, MIT Press

33

Vision based locomotion

Vision based locomotion

Evolution of Neural Topologies

Problems:

- Many non-functional network in initial population
- More complex networks can't compete in the short run
- Competing conventions in genetic string

NeuroEvolution through Augmenting Topologies (NEAT)

PROBLEM: Compared to smaller networks, larger networks need more evolutionary time to obtain similar performance and could be eliminated from the population

SPECIATION: continuously compare networks and group them by similarity, i.e. create species. Mating and crossover takes place only within the groups

FITNESS SHARING: In order to prevent domination of a single group, individuals in a group share fitness: the fitness of the individual is divided by the number of individuals in the group (the larger the group, the smaller the individual fitness)

Competing conventions

Sar	ne ge	ene	may	be i	n di	ffere	nt p	ositions

Different genes may be in same positions

NeuroEvolution through Augmenting Topologies (NEAT)

Use a global clock to keep track of "innovation time" in mutation

Genome (Genotype)															
Node	Node 1	No	de 2	Node	3	Node	4	Node 5							
Genes	Sensor	Se	nsor	Senso	r	Outpu	ıt	Hidden							
Connect.	In 1 In 2			In 3		In 2	[n 2]		In 5		In 1		In 4		
Genes	Out 4		Out	Out 4		Out 4		Out 5	5 Out 4			Out 5		Out 5	
	Weight 0	.7	Weigh	Weight-0.5		Weight 0.5		Weight 0.2 Weig		Weight	Weight 0.4 Weight 0.6		0.6	Weight 0.6	
	Enabled	1	DISA	DISABLED		Enabled		Enabled		Enabled		Enabled		Enabled	
	Innov 1	L	Inno	v 2	In	nov 3	}	Innov 4	4	Innov	5	Innov	6	Innov	11

Innovation numbers tell exactly when in history a specific topological feature appeared, so that it can be matched up with the same feature in another network.

Example of 2 innovations

Crossover

Evolution OF Learning

Synaptic learning rules can be genetically encoded. The rules are applied to the synaptic weights starting from random initial conditions.

Important aspects:

- A neural network can use different learning rules in different parts
- There is no need of teacher or reinforcement learning, no gradient descent and local minima
- Individuals are selected for their ability to learn, not simply to solve a specific problem

Online Adaptation

In addition, they perform well in different environments by developing suitable strategies. Contrary to conventional models, several synapses continue to change, but the overal pattern of change is dynamically stable.

A Sequential Task

A Khepera robot is evolved to switch on a light and go under the light, but this sequence of actions is not directly rewarded by the fitness function.

Robustness to Color Change

Evolved adaptive individuals can cope with new colours of the walls whereas genetically-determined individuals fail.

Genetically-determined

Adaptive

Robustness to Layout Modification

Evolved adaptive individuals can cope with new positions of the two landmarks whereas genetically-determined inviduals cannot.

Fitness function design

Design of fitness functions that can generate *desired behaviors* is the most difficult aspect of Evolutionary Robotics.

